Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
32 tokens/sec
GPT-5 Medium
18 tokens/sec
GPT-5 High Premium
18 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
475 tokens/sec
Kimi K2 via Groq Premium
259 tokens/sec
2000 character limit reached

Exploiting cone approximations in an augmented Lagrangian method for conic optimization (2406.00854v2)

Published 2 Jun 2024 in math.OC

Abstract: We propose an algorithm for general nonlinear conic programming which does not require the knowledge of the full cone, but rather a simpler, more tractable, approximation of it. We prove that the algorithm satisfies a strong global convergence property in the sense that it generates a strong sequential optimality condition. In particular, a KKT point is necessarily found when a limit point satisfies Robinson's condition. We conduct numerical experiments minimizing nonlinear functions subject to a copositive cone constraint. In order to do this, we consider a well known polyhedral approximation of this cone by means of refining the polyhedral constraints after each augmented Lagrangian iteration. We show that our strategy outperforms the standard approach of considering a close polyhedral approximation of the full copositive cone in every iteration.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.