Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Stochastic Incentive-based Demand Response Program for Virtual Power Plant with Solar, Battery, Electric Vehicles, and Controllable Loads (2406.00163v1)

Published 31 May 2024 in cs.IT, cs.SY, eess.SY, and math.IT

Abstract: The growing integration of distributed energy resources (DERs) into the power grid necessitates an effective coordination strategy to maximize their benefits. Acting as an aggregator of DERs, a virtual power plant (VPP) facilitates this coordination, thereby amplifying their impact on the transmission level of the power grid. Further, a demand response program enhances the scheduling approach by managing the energy demands in parallel with the uncertain energy outputs of the DERs. This work presents a stochastic incentive-based demand response model for the scheduling operation of VPP comprising solar-powered generating stations, battery swapping stations, electric vehicle charging stations, and consumers with controllable loads. The work also proposes a priority mechanism to consider the individual preferences of electric vehicle users and consumers with controllable loads. The scheduling approach for the VPP is framed as a multi-objective optimization problem, normalized using the utopia-tracking method. Subsequently, the normalized optimization problem is transformed into a stochastic formulation to address uncertainties in energy demand from charging stations and controllable loads. The proposed VPP scheduling approach is addressed on a 33-node distribution system simulated using MATLAB software, which is further validated using a real-time digital simulator.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com