Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Monte Carlo Tree Search Satellite Scheduling Under Cloud Cover Uncertainty (2405.20951v1)

Published 31 May 2024 in cs.AI, cs.SY, and eess.SY

Abstract: Efficient utilization of satellite resources in dynamic environments remains a challenging problem in satellite scheduling. This paper addresses the multi-satellite collection scheduling problem (m-SatCSP), aiming to optimize task scheduling over a constellation of satellites under uncertain conditions such as cloud cover. Leveraging Monte Carlo Tree Search (MCTS), a stochastic search algorithm, two versions of MCTS are explored to schedule satellites effectively. Hyperparameter tuning is conducted to optimize the algorithm's performance. Experimental results demonstrate the effectiveness of the MCTS approach, outperforming existing methods in both solution quality and efficiency. Comparative analysis against other scheduling algorithms showcases competitive performance, positioning MCTS as a promising solution for satellite task scheduling in dynamic environments.

Summary

We haven't generated a summary for this paper yet.