Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Large Language Models: A New Approach for Privacy Policy Analysis at Scale (2405.20900v1)

Published 31 May 2024 in cs.CL and cs.CY

Abstract: The number and dynamic nature of web and mobile applications presents significant challenges for assessing their compliance with data protection laws. In this context, symbolic and statistical NLP techniques have been employed for the automated analysis of these systems' privacy policies. However, these techniques typically require labor-intensive and potentially error-prone manually annotated datasets for training and validation. This research proposes the application of LLMs as an alternative for effectively and efficiently extracting privacy practices from privacy policies at scale. Particularly, we leverage well-known LLMs such as ChatGPT and Llama 2, and offer guidance on the optimal design of prompts, parameters, and models, incorporating advanced strategies such as few-shot learning. We further illustrate its capability to detect detailed and varied privacy practices accurately. Using several renowned datasets in the domain as a benchmark, our evaluation validates its exceptional performance, achieving an F1 score exceeding 93%. Besides, it does so with reduced costs, faster processing times, and fewer technical knowledge requirements. Consequently, we advocate for LLM-based solutions as a sound alternative to traditional NLP techniques for the automated analysis of privacy policies at scale.

Citations (3)

Summary

We haven't generated a summary for this paper yet.