Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weak Robust Compatibility Between Learning Algorithms and Counterfactual Explanation Generation Algorithms (2405.20664v1)

Published 31 May 2024 in cs.LG

Abstract: Counterfactual explanation generation is a powerful method for Explainable Artificial Intelligence. It can help users understand why machine learning models make specific decisions, and how to change those decisions. Evaluating the robustness of counterfactual explanation algorithms is therefore crucial. Previous literature has widely studied the robustness based on the perturbation of input instances. However, the robustness defined from the perspective of perturbed instances is sometimes biased, because this definition ignores the impact of learning algorithms on robustness. In this paper, we propose a more reasonable definition, Weak Robust Compatibility, based on the perspective of explanation strength. In practice, we propose WRC-Test to help us generate more robust counterfactuals. Meanwhile, we designed experiments to verify the effectiveness of WRC-Test. Theoretically, we introduce the concepts of PAC learning theory and define the concept of PAC WRC-Approximability. Based on reasonable assumptions, we establish oracle inequalities about weak robustness, which gives a sufficient condition for PAC WRC-Approximability.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets