Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sparse-ProxSkip: Accelerated Sparse-to-Sparse Training in Federated Learning (2405.20623v2)

Published 31 May 2024 in cs.LG and math.OC

Abstract: In Federated Learning (FL), both client resource constraints and communication costs pose major problems for training large models. In the centralized setting, sparse training addresses resource constraints, while in the distributed setting, local training addresses communication costs. Recent work has shown that local training provably improves communication complexity through acceleration. In this work we show that in FL, naive integration of sparse training and acceleration fails, and we provide theoretical and empirical explanations of this phenomenon. We introduce Sparse-ProxSkip, addressing the issue and implementing the efficient technique of Straight-Through Estimator pruning into sparse training. We demonstrate the performance of Sparse-ProxSkip in extensive experiments.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets