Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Information-driven design of imaging systems (2405.20559v3)

Published 31 May 2024 in physics.optics, cs.CV, cs.IT, eess.IV, math.IT, and physics.data-an

Abstract: Most modern imaging systems process the data they capture computationally, either to make the measurement more interpretable for human viewing or to analyze it without a human in the loop. As a result, what matters is not how measurements appear visually, but how much information they contain. Information theory provides mathematical tools to quantify this; however, it has found limited use in imaging system design due to the challenge of developing methods that can handle the complexity of real-world measurements yet remain practical enough for widespread use. We introduce a data-driven approach for estimating the information content of imaging system measurements in order to evaluate system performance and optimize designs. Our framework requires only a dataset of experimental measurements and a means for noise characterization, enabling its use in real systems without ground truth data. We validate that these information estimates reliably predict system performance across diverse imaging modalities, including color photography, radio astronomy, lensless imaging, and label-free microscopy. We further introduce an optimization technique called Information-Driven Encoder Analysis Learning (IDEAL) for designing imaging systems that maximize information capture. This work unlocks information theory as a powerful, practical tool for analyzing and designing imaging systems across a broad range of applications. A video summarizing this work can be found at https://waller-lab.github.io/EncodingInformationWebsite/

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com