Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gradient Inversion of Federated Diffusion Models (2405.20380v1)

Published 30 May 2024 in cs.AI, cs.CR, and cs.CV

Abstract: Diffusion models are becoming defector generative models, which generate exceptionally high-resolution image data. Training effective diffusion models require massive real data, which is privately owned by distributed parties. Each data party can collaboratively train diffusion models in a federated learning manner by sharing gradients instead of the raw data. In this paper, we study the privacy leakage risk of gradient inversion attacks. First, we design a two-phase fusion optimization, GIDM, to leverage the well-trained generative model itself as prior knowledge to constrain the inversion search (latent) space, followed by pixel-wise fine-tuning. GIDM is shown to be able to reconstruct images almost identical to the original ones. Considering a more privacy-preserving training scenario, we then argue that locally initialized private training noise $\epsilon$ and sampling step t may raise additional challenges for the inversion attack. To solve this, we propose a triple-optimization GIDM+ that coordinates the optimization of the unknown data, $\epsilon$ and $t$. Our extensive evaluation results demonstrate the vulnerability of sharing gradient for data protection of diffusion models, even high-resolution images can be reconstructed with high quality.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com