Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

NeRF View Synthesis: Subjective Quality Assessment and Objective Metrics Evaluation (2405.20078v3)

Published 30 May 2024 in cs.MM

Abstract: Neural radiance fields (NeRF) are a groundbreaking computer vision technology that enables the generation of high-quality, immersive visual content from multiple viewpoints. This capability has significant advantages for applications such as virtual/augmented reality, 3D modelling, and content creation for the film and entertainment industry. However, the evaluation of NeRF methods poses several challenges, including a lack of comprehensive datasets, reliable assessment methodologies, and objective quality metrics. This paper addresses the problem of NeRF view synthesis (NVS) quality assessment thoroughly, by conducting a rigorous subjective quality assessment test that considers several scene classes and recently proposed NVS methods. Additionally, the performance of a wide range of state-of-the-art conventional and learning-based full-reference 2D image and video quality assessment metrics is evaluated against the subjective scores of the subjective study. This study found that errors in camera pose estimation can result in spatial misalignments between synthesized and reference images, which need to be corrected before applying an objective quality metric. The experimental results are analyzed in depth, providing a comparative evaluation of several NVS methods and objective quality metrics, across different classes of visual scenes, including real and synthetic content for front-face and 360-degree camera trajectories.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com