Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

Modelling and Forecasting Energy Market Volatility Using GARCH and Machine Learning Approach (2405.19849v1)

Published 30 May 2024 in econ.EM

Abstract: This paper presents a comparative analysis of univariate and multivariate GARCH-family models and machine learning algorithms in modeling and forecasting the volatility of major energy commodities: crude oil, gasoline, heating oil, and natural gas. It uses a comprehensive dataset incorporating financial, macroeconomic, and environmental variables to assess predictive performance and discusses volatility persistence and transmission across these commodities. Aspects of volatility persistence and transmission, traditionally examined by GARCH-class models, are jointly explored using the SHAP (Shapley Additive exPlanations) method. The findings reveal that machine learning models demonstrate superior out-of-sample forecasting performance compared to traditional GARCH models. Machine learning models tend to underpredict, while GARCH models tend to overpredict energy market volatility, suggesting a hybrid use of both types of models. There is volatility transmission from crude oil to the gasoline and heating oil markets. The volatility transmission in the natural gas market is less prevalent.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)