Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improve Student's Reasoning Generalizability through Cascading Decomposed CoTs Distillation (2405.19842v1)

Published 30 May 2024 in cs.CL and cs.AI

Abstract: LLMs exhibit enhanced reasoning at larger scales, driving efforts to distill these capabilities into smaller models via teacher-student learning. Previous works simply fine-tune student models on teachers' generated Chain-of-Thoughts (CoTs) data. Although these methods enhance in-domain (IND) reasoning performance, they struggle to generalize to out-of-domain (OOD) tasks. We believe that the widespread spurious correlations between questions and answers may lead the model to preset a specific answer which restricts the diversity and generalizability of its reasoning process. In this paper, we propose Cascading Decomposed CoTs Distillation (CasCoD) to address these issues by decomposing the traditional single-step learning process into two cascaded learning steps. Specifically, by restructuring the training objectives -- removing the answer from outputs and concatenating the question with the rationale as input -- CasCoD's two-step learning process ensures that students focus on learning rationales without interference from the preset answers, thus improving reasoning generalizability. Extensive experiments demonstrate the effectiveness of CasCoD on both IND and OOD benchmark reasoning datasets. Code can be found at https://github.com/C-W-D/CasCoD.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Chengwei Dai (4 papers)
  2. Kun Li (193 papers)
  3. Wei Zhou (311 papers)
  4. Songlin Hu (80 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.