Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamic feature selection in medical predictive monitoring by reinforcement learning (2405.19729v1)

Published 30 May 2024 in cs.LG and cs.AI

Abstract: In this paper, we investigate dynamic feature selection within multivariate time-series scenario, a common occurrence in clinical prediction monitoring where each feature corresponds to a bio-test result. Many existing feature selection methods fall short in effectively leveraging time-series information, primarily because they are designed for static data. Our approach addresses this limitation by enabling the selection of time-varying feature subsets for each patient. Specifically, we employ reinforcement learning to optimize a policy under maximum cost restrictions. The prediction model is subsequently updated using synthetic data generated by trained policy. Our method can seamlessly integrate with non-differentiable prediction models. We conducted experiments on a sizable clinical dataset encompassing regression and classification tasks. The results demonstrate that our approach outperforms strong feature selection baselines, particularly when subjected to stringent cost limitations. Code will be released once paper is accepted.

Summary

We haven't generated a summary for this paper yet.