Lagrangian metric geometry with Riemannian bounds (2405.19144v2)
Abstract: We study collections of exact Lagrangian submanifolds respecting some uniform Riemannian bounds, which we equip with a metric naturally arising in symplectic topology (e.g. the Lagrangian Hofer metric or the spectral metric). We exhibit many metric and symplectic properties of these spaces, such that they have compact completions and that they contain only finitely many Hamiltonian isotopy classes. We then use this to exclude many unusual phenomena from happening in these bounded spaces. Taking limits in the bounds, we also conclude that there are at most countably many Hamiltonian isotopy classes of exact Lagrangian submanifolds in a Liouville manifold. Under some mild topological assumptions, we get analogous results for monotone Lagrangian submanifolds with a fixed monotonicity constant. Finally, in the process of showing these results, we get new results on the Riemannian geometry of cotangent bundles and surfaces which might be of independent interest.
- M. Abouzaid. Nearby Lagrangians with vanishing Maslov class are homotopy equivalent. Inventiones Mathematicæ, 189(2):251–313, 2012.
- Higher dimensional Birkhoff attractors. 2024. arXiv preprint arXiv:2404.00804.
- R. Albuquerque. Notes on the Sasaki metric. Expositiones Mathematicae, 37(2):207–224, 2019.
- D. Auroux. Infinitely many monotone Lagrangian tori in ℝ6superscriptℝ6{\mathds{R}}^{6}blackboard_R start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT. Inventiones mathematicae, 201(3):909–924, 2015.
- M.T.K. Abbassi and A. Yampolsky. Transverse totally geodesic submanifolds of the tangent bundle. Publicationes Mathematicae, 64(1-2):129–154, 2004.
- Categorical entropies on symplectic manifolds. arXiv preprint arXiv:2203.12205, 2022.
- Lagrangian shadows and triangulated categories. Astérisque, 426:1–128, 2021.
- Triangulation, persistence, and Fukaya categories. arXiv preprint arXiv:2304.01785, 2023.
- On the growth of the Floer barcode. arXiv preprint arXiv:2207.03613, 2022.
- J.-P. Chassé. Convergence and Riemannian bounds on Lagrangian submanifolds. International Journal of Mathematics, 23, 2023.
- J.-P. Chassé. Hausdorff limits of submanifolds of symplectic and contact manifolds. Differential Geometry and its Applications, 94, 2024.
- Y.V. Chekanov. Invariant Finsler metrics on the space of Lagrangian embeddings. Mathematische Zeitschrift, 234(3):605–619, 2000.
- J.-P. Chassé and R. Leclercq. A Hölder-type inequality for the Hausdorff distance between Lagrangians. arXiv preprint arXiv:2308.16695, 2023.
- O. Cornea and E. Shelukhin. Lagrangian cobordism and metric invariants. Journal of Differential Geometry, 112(1):1–45, 2019.
- M. P. do Carmo. Riemannian geometry. Mathematics: Theory & Applications. Birkhäuser, English edition, 1992.
- Dynamical systems and categories. In L. Katzarkov, E. Lupercio, and F. J. Turrubiates, editors, The influence of Solomon Lefschetz in geometry and topology: 50 years of mathematics at CINVESTAV, volume 621 of Contemporary Mathematics, pages 133–170. American Mathematical Society Providence, 2014.
- Exact Lagrangian submanifolds in simply-connected cotangent bundles. Inventiones mathematicae, 172(1):1–27, 2008.
- The symplectic geometry of cotangent bundles from a categorical viewpoint. In K.-G. Schlesinger, M. Kreuzer, and A. Kapustin, editors, Homological mirror symmetry, volume 757 of Lecture Notes in Physics, pages 1–26. Springer, 2008.
- A. Gray. Tubes, volume 221 of Progress in Mathematics. Birkhäuser, 2nd edition, 2004.
- Y. Groman and J. P. Solomon. J𝐽{J}italic_J-holomorphic curves with boundary in bounded geometry. Journal of Symplectic Geometry, 14(3):767–809, 2016.
- S. Guillermou and N. Vichery. Viterbo’s spectral bound conjecture for homogeneous spaces. arXiv preprint arXiv:2203.13700, 2022.
- H. Iriyeh and T. Otofuji. Geodesics of Hofer’s metric on the space of Lagrangian submanifolds. manuscripta mathematica, 122:391–406, 2007.
- A. Jannaud. Dehn-Seidel twist, C0superscript𝐶0{C}^{0}italic_C start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT symplectic topology and barcodes. arXiv preprint arXiv:2101.07878, 2021.
- M. Khanevsky. Hofer’s metric on the space of diameters. Journal of Topology and Analysis, 1(04):407–416, 2009.
- O. Kowalski. Curvature of the induced Riemannian metric on the tangent bundle of a Riemannian manifold. Journal für die reine und angewandte Mathematik, 1971(250):124–129, 1971.
- T. Kragh. Parametrized ring-spectra and the nearby Lagrangian conjecture. Geometry & Topology, 17(2):639–731, 2013.
- A. Kislev and E. Shelukhin. Bounds on spectral norms and barcodes. Geometry & Topology, 25(7):3257–3350, 2022.
- R. Leclercq. Spectral invariants in Lagrangian Floer theory. Journal of Modern Dynamics, 2(2):249–286, 2008.
- R. Leclercq and F. Zapolsky. Spectral invariants for monotone Lagrangians. Journal of Topology and Analysis, 10(03):627–700, 2018.
- D. Milinković. Geodesics on the space of Lagrangian submanifolds in cotangent bundles. Proceedings of the American Mathematical Society, 129(6):1843–1851, 2001.
- K. Ono. Floer–Novikov cohomology and the flux conjecture. Geometric & Functional Analysis, 16(5):981–1020, 2006.
- Y. Ostrover. A comparison of Hofer’s metrics on Hamiltonian diffeomorphisms and Lagrangian submanifolds. Communications in Contemporary Mathematics, 5(05):803–811, 2003.
- S. Sasaki. On the differential geometry of tangent bundles of Riemannian manifolds. Tohoku Mathematical Journal, Second Series, 10(3):338–354, 1958.
- P. Seidel. Fukaya categories and Picard–Lefschetz theory, volume 10 of EMS Zurich Lectures in Advanced Mathematics. European Mathematical Society, 2008.
- N. Sheridan. On the Fukaya category of a Fano hypersurface in projective space. Publications mathématiques de l’IHÉS, 124(1):165–317, 2016.
- E. Shelukhin. Symplectic cohomology and a conjecture of Viterbo. Geometric and Functional Analysis, 32(6):1514–1543, 2022.
- E. Shelukhin. Viterbo conjecture for Zoll symmetric spaces. Inventiones Mathematicæ, 230:321–373, 2022.
- E.N. Sosov. On Hausdorff intrinsic metric. Lobachevskii Journal of Mathematics, 8:185–189, 2001.
- C. Viterbo. Symplectic topology as the geometry of generating functions. Mathematische Annalen, 292(4):685–710, 1992.
- Claude Viterbo. Inverse reduction inequalities for spectral numbers and applications. arXiv preprint arXiv:2203.13172, 2022.
- Y. Yomdin. Volume growth and entropy. Israel Journal of Mathematics, 57:285–300, 1987.
Collections
Sign up for free to add this paper to one or more collections.