Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimization-based Proof of Useful Work: Framework, Modeling, and Security Analysis (2405.19027v2)

Published 29 May 2024 in cs.DC

Abstract: Proof of Work (PoW) has extensively served as the foundation of blockchain's security, consistency, and tamper-resistance. However, long has it been criticized for its tremendous and inefficient utilization of computational power and energy. Proof of useful work (PoUW) can effectively address the blockchain's sustainability issue by redirecting the computing power towards useful tasks instead of meaningless hash puzzles. Optimization problems, whose solutions are often hard to find but easy to verify, present a viable class of useful work for PoUW. However, most existing studies rely on either specific problems or particular algorithms, and there lacks comprehensive security analysis for optimization-based PoUW. Therefore, in this work, we build a generic PoUW framework that solves useful optimization problems for blockchain maintenance. Through modeling and analysis, we identify the security conditions against both selfish and malicious miners. Based on these conditions, we establish a lower bound for the security overhead and uncover the trade-off between useful work efficiency and PoW safeguard. We further offer the reward function design guidelines to guarantee miners' integrity. We also show that the optimization-based PoUW is secure in the presence of malicious miners and derive a necessary condition against long-range attacks. Finally, simulation results are presented to validate our analytical results.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. X. Ling, J. Wang, T. Bouchoucha, B. C. Levy, and Z. Ding, “Blockchain radio access network (B-RAN): Towards decentralized secure radio access paradigm,” IEEE Access, vol. 7, pp. 9714–9723, Jan. 2019.
  2. X. Ling, J. Wang, Y. Le, Z. Ding, and X. Gao, “Blockchain radio access network beyond 5G,” IEEE Wireless Commun., vol. 27, no. 6, pp. 160–168, Dec. 2020.
  3. X. Ling, Y. Le, J. Wang, Z. Ding, and X. Gao, “Practical modeling and analysis of blockchain radio access network,” IEEE Trans. Commun., vol. 69, no. 2, pp. 1021–1037, Feb. 2021.
  4. M. Jiang, Y. Li, Q. Zhang, G. Zhang, and J. Qin, “Decentralized blockchain-based dynamic spectrum acquisition for wireless downlink communications,” IEEE Trans. Signal Process., vol. 69, pp. 986–997, Jan. 2021.
  5. S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Tech. Rep., Oct. 2008.
  6. W. Wang et al., “A survey on consensus mechanisms and mining strategy management in blockchain networks,” IEEE Access, vol. 7, pp. 22 328–22 370, Jan. 2019.
  7. M. Ball, A. Rosen, M. Sabin, and P. N. Vasudevan, “Proofs of useful work,” IACR Cryptology ePrint Arch., Mar. 2017. [Online]. Available: https://eprint.iacr.org/2017/203.pdf
  8. A. M. Ileri, H. I. Ozercan, A. Gundogdu, A. K. Senol, M. Y. Ozkaya, and C. Alkan, “Coinami: A cryptocurrency with DNA sequence alignment as proof-of-work,” arXiv preprint, Feb. 2016. [Online]. Available: https://arxiv.org/pdf/1602.03031.pdf
  9. A. F. Loe and E. A. Quaglia, “Conquering generals: An NP-hard proof of useful work,” in Proc. 1st Workshop Cryptocurrencies Blockchains Distrib. Syst. (CryBlock’18), Munich, DE, Jun. 2018, pp. 54 – 59. [Online]. Available: https://doi.org/10.1145/3211933.3211943
  10. M. Hastings, N. Heninger, and E. Wustrow, “The proof is in the pudding: Proofs of work for solving discrete logarithms,” Cryptology ePrint Arch., Oct. 2018. [Online]. Available: https://eprint.iacr.org/2018/939
  11. A. Shoker, “Sustainable blockchain through proof of exercise,” in IEEE 16th Int. Symp. Netw. Comput. Appl. (NCA’17), Cambridge, MA, USA, Oct. 2017, pp. 1–9.
  12. C. G. Oliver, A. Ricottone, and P. Philippopoulos, “Proposal for a fully decentralized blockchain and proof-of-work algorithm for solving np-complete problems,” arXiv preprint, Sep. 2017. [Online]. Available: http://arxiv.org/abs/1708.09419
  13. P. Philippopoulos, A. Ricottone, and C. G. Oliver, “Difficulty scaling in proof of work for decentralized problem solving,” Ledger, vol. 5, pp. 1–12, Aug. 2020. [Online]. Available: https://doi.org/10.5195/ledger.2020.194
  14. K. Chatterjee, A. K. Goharshady, and A. Pourdamghani, “Hybrid mining: Exploiting blockchain’s computational power for distributed problem solving,” in Proc. 34th ACM/SIGAPP Symp. Appl. Comput. (SAC ’19), Limassol, CY, Apr. 2019, pp. 374–381. [Online]. Available: https://doi.org/10.1145/3297280.3297319
  15. N. Shibata, “Proof-of-search: Combining blockchain consensus formation with solving optimization problems,” IEEE Access, vol. 7, pp. 172 994–173 006, Nov. 2019.
  16. F. Bizzaro, M. Conti, and M. S. Pini, “Proof of evolution: leveraging blockchain mining for a cooperative execution of genetic algorithms,” in Proc. Int. Conf. Blockchain. (Blockchain’20), Rhodes, GR, Nov. 2020, pp. 450–455.
  17. T. Davidović et al., “COCP: Blockchain proof-of-useful-work leveraging real-life applications,” in Proc. 4th Int. Conf. Blockchain Comput. Appl. (BCCA’22), San Antonio, TX, USA, Sep. 2022, pp. 107–110.
  18. M. Todorović et al., “Proof-of-useful-work: Blockchain mining by solving real-life optimization problems,” Symmetry, vol. 14, no. 9, Sep. 2022. [Online]. Available: https://www.mdpi.com/2073-8994/14/9/1831
  19. M. Fitzi, A. Kiayias, G. Panagiotakos, and A. Russell, “Ofelimos: Combinatorial optimization via proof-of-useful-work: A provably secure blockchain protocol,” in Proc. 42nd Annu. Int. Cryptology Conf. (CRYPTO’22), Santa Barbara, US, Aug. 2022. [Online]. Available: https://doi.org/10.1007/978-3-031-15979-4_12
  20. A. Baldominos and Y. Saez, “Coin.AI: A proof-of-useful-work scheme for blockchain-based distributed deep learning,” Entropy, vol. 21, no. 8, Jul. 2019. [Online]. Available: https://www.mdpi.com/1099-4300/21/8/723
  21. F. Bravo-Marquez, S. Reeves, and M. Ugarte, “Proof-of-learning: A blockchain consensus mechanism based on machine learning competitions,” in Proc. IEEE Int. Conf. Decentralized Appl. Infrastruct. (DAPPCON’19), San Francisco, CA, USA, Apr. 2019, pp. 119–124.
  22. C. Chenli, B. Li, Y. Shi, and T. Jung, “Energy-recycling blockchain with proof-of-deep-learning,” in 2019 IEEE Int. Conf. Blockchain Cryptocurrency (ICBC’19), Seoul, KR, May 2019, pp. 19–23.
  23. Y. Liu, Y. Lan, B. Li, C. Miao, and Z. Tian, “Proof of learning (PoLe): Empowering neural network training with consensus building on blockchains,” Comput. Netw., vol. 201, no. 108594, pp. 1–12, Dec. 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1389128621004965
  24. X. Qu, S. Wang, Q. Hu, and X. Cheng, “Proof of federated learning: A novel energy-recycling consensus algorithm,” IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 8, pp. 2074–2085, Aug. 2021.
  25. Y. Wang, H. Peng, Z. Su, T. H. Luan, A. Benslimane, and Y. Wu, “A platform-free proof of federated learning consensus mechanism for sustainable blockchains,” IEEE J. Sel. Areas Commun., vol. 40, no. 12, pp. 3305–3324, Oct. 2022.
  26. Y. Wei, Z. An, S. Leng, and K. Yang, “Evolved PoW: Integrating the matrix computation in machine learning into blockchain mining,” IEEE Internet Things J., vol. 10, no. 8, pp. 6689 – 6702, Apr. 2023.
  27. C. Xu et al., “BASS: A blockchain-based asynchronous signsgd architecture for efficient and secure federated learning,” IEEE Trans. Dependable Secure Comput., pp. 1–15, Mar. 2024.
  28. C. Chen, Z. Cheng, S. Qu, and Z. Fang, “Crowdsourcing work as mining: A decentralized computation and storage paradigm,” arXiv preprint, Nov. 2022. [Online]. Available: https://arxiv.org/pdf/2211.06669.pdf
  29. J. Garay, A. Kiayias, and N. Leonardos, “The bitcoin backbone protocol: Analysis and applications,” in Proc. 34th Annu. Int. Conf. Theory Appl. Cryptograph. Techn. (EUROCRYPT’15).   Sofia, BG: Springer, Apr. 2015, pp. 281–310.
  30. J. R. Senning, “Computing and estimating the rate of convergence,” 2019. [Online]. Available: https://www.math-cs.gordon.edu/courses/ma342/handouts/rate.pdf

Summary

We haven't generated a summary for this paper yet.