Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Predicting Many Crystal Properties via an Adaptive Transformer-based Framework (2405.18944v2)

Published 29 May 2024 in cond-mat.mtrl-sci, cond-mat.mes-hall, and cs.LG

Abstract: Machine learning has revolutionized many fields, including materials science. However, predicting properties of crystalline materials using machine learning faces challenges in input encoding, output versatility, and interpretability. We introduce CrystalBERT, an adaptable transformer-based framework integrating space group, elemental, and unit cell information. This novel structure can seamlessly combine diverse features and accurately predict various physical properties, including topological properties, superconducting transition temperatures, dielectric constants, and more. CrystalBERT provides insightful interpretations of features influencing target properties. Our results indicate that space group and elemental information are crucial for predicting topological and superconducting properties, underscoring their intricate nature. By incorporating these features, we achieve 91\% accuracy in topological classification, surpassing prior studies and identifying previously misclassified materials. This research demonstrates that integrating diverse material information enhances the prediction of complex material properties, paving the way for more accurate and interpretable machine learning models in materials science.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com