Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Signal-Comparison-Based Distributed Estimation Under Decaying Average Data Rate Communications (2405.18694v2)

Published 29 May 2024 in eess.SY and cs.SY

Abstract: The paper investigates the distributed estimation problem under low bit rate communications. Based on the signal-comparison (SC) consensus protocol under binary-valued communications, a new consensus+innovations type distributed estimation algorithm is proposed. Firstly, the high-dimensional estimates are compressed into binary-valued messages by using a periodic compressive strategy, dithered noises and a sign function. Next, based on the dithered noises and expanding triggering thresholds, a new stochastic event-triggered mechanism is proposed to reduce the communication frequency. Then, a modified SC consensus protocol is applied to fuse the neighborhood information. Finally, a stochastic approximation estimation algorithm is used to process innovations. The proposed SC-based algorithm has the advantages of high effectiveness and low communication cost. For the effectiveness, the estimates of the SC-based algorithm converge to the true value in the almost sure and mean square sense. A polynomial almost sure convergence rate is also obtained. For the communication cost, the local and global average bit rates for communications decay to zero at a polynomial rate. The trade-off between the convergence rate and the communication cost is established through event-triggered coefficients. A better convergence rate can be achieved by decreasing event-triggered coefficients, while lower communication cost can be achieved by increasing event-triggered coefficients. A simulation example is given to demonstrate the theoretical results.

Summary

We haven't generated a summary for this paper yet.