Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Linear arboricity of graphs with large minimum degree (2405.18494v1)

Published 28 May 2024 in math.CO

Abstract: In 1980, Akiyama, Exoo, and Harary conjectured that any graph $G$ can be decomposed into at most $\lceil(\Delta(G)+1)/2\rceil$ linear forests. We confirm the conjecture for sufficiently large graphs with large minimum degree. Precisely, we show that for any given $0<\varepsilon <1$, there exists $n_0 \in \mathbb{N}$ for which the following statement holds: If $G$ is a graph on $n\ge n_0$ vertices of minimum degree at least $(1+\varepsilon )n/2$, then $G$ can be decomposed into at most $\lceil(\Delta(G)+1)/2\rceil$ linear forests.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. Covering and packing in graphs. III. Cyclic and acyclic invariants. Math. Slovaca, 30(4):405–417, 1980.
  2. N. Alon. The linear arboricity of graphs. Israel J. Math., 62(3):311–325, 1988.
  3. N. Alon and J. H. Spencer. The probabilistic method. Wiley-Interscience Series in Discrete Mathematics and Optimization. John Wiley & Sons, Inc., New York, 1992. With an appendix by Paul Erdős, A Wiley-Interscience Publication.
  4. C. Berge. Sur le couplage maximum d’un graphe. C. R. Acad. Sci. Paris, 247:258–259, 1958.
  5. G. Chen and Y. Hao. The conjunction of the linear arboricity conjecture and Lovász’s path partition theorem. Discrete Math., 344(8):Paper No. 112434, 7, 2021.
  6. Proof of the 1-factorization and Hamilton decomposition conjectures. Mem. Amer. Math. Soc., 244(1154):v+164, 2016.
  7. A planar linear arboricity conjecture. J. Graph Theory, 69(4):403–425, 2012.
  8. G. A. Dirac. Some theorems on abstract graphs. Proc. London Math. Soc. (3), 2:69–81, 1952.
  9. H. Enomoto and B. Péroche. The linear arboricity of some regular graphs. J. Graph Theory, 8(2):309–324, 1984.
  10. Towards the linear arboricity conjecture. J. Combin. Theory Ser. B, 142:56–79, 2020.
  11. Path and cycle decompositions of dense graphs. J. Lond. Math. Soc. (2), 104(3):1085–1134, 2021.
  12. Optimal path and cycle decompositions of dense quasirandom graphs. J. Combin. Theory Ser. B, 118:88–108, 2016.
  13. F. Guldan. Some results on linear arboricity. J. Graph Theory, 10(4):505–509, 1986.
  14. S. L. Hakimi. On realizability of a set of integers as degrees of the vertices of a linear graph. I. J. Soc. Indust. Appl. Math., 10:496–506, 1962.
  15. F. Harary. Covering and packing in graphs. I. Ann. New York Acad. Sci., 175:198–205, 1970.
  16. D. Kühn and D. Osthus. Hamilton decompositions of regular expanders: applications. J. Combin. Theory Ser. B, 104:1–27, 2014.
  17. R. Lang and L. Postle. An improved bound for the linear arboricity conjecture. Combinatorica, 43(3):547–569, 2023.
  18. B. Niu and X. Zhang. Linear arboricity of NIC-planar graphs. Acta Math. Appl. Sin. Engl. Ser., 35(4):924–934, 2019.
  19. B. Péroche. Complexité de l’arboricité linéaire d’un graphe. II. RAIRO Rech. Opér., 19(3):293–300, 1985.
  20. M. J. Plantholt and S. Shan. Edge coloring graphs with large minimum degree. J. Graph Theory, 102(4):611–632, 2023.
  21. S. Shan. Towards the Overfull Conjecture. arXiv:2308.16808.
  22. W. T. Tutte. The factorization of linear graphs. J. London Math. Soc., 22:107–111, 1947.
  23. On the linear arboricity of graphs embeddable in surfaces. Inform. Process. Lett., 114(9):475–479, 2014.
  24. D. B. West. A short proof of the Berge-Tutte formula and the Gallai-Edmonds structure theorem. European J. Combin., 32(5):674–676, 2011.
  25. J.-L. Wu. On the linear arboricity of planar graphs. J. Graph Theory, 31(2):129–134, 1999.
  26. The linear arboricity of K5subscript𝐾5K_{5}italic_K start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT-minor free graphs. Discrete Appl. Math., 322:49–60, 2022.

Summary

We haven't generated a summary for this paper yet.