Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Collectively enhanced ground-state cooling in subwavelength atomic arrays (2405.18482v2)

Published 28 May 2024 in quant-ph and physics.atom-ph

Abstract: Subwavelength atomic arrays feature strong light-induced dipole-dipole interactions, resulting in subradiant collective resonances characterized by narrowed linewidths. In this work, we present a sideband cooling scheme for atoms trapped in subwavelength arrays that utilizes these narrow collective resonances. Working in the Lamb-Dicke regime, we derive an effective master equation for the atomic motion by adiabatically eliminating the internal degrees of freedom of the atoms, and validate its prediction with numerical simulations of the full system. Our results demonstrate that subradiant resonances enable the cooling of ensembles of atoms to temperatures lower than those achievable without dipole interactions, provided the atoms have different trap frequencies. Remarkably, narrow collective resonances can be sideband-resolved even when the individual atomic transition is not. In such scenarios, ground-state cooling becomes feasible solely due to light-induced dipole-dipole interactions. This approach could be utilized for future quantum technologies based on dense ensembles of emitters, and paves the way towards harnessing many-body cooperative decay for enhanced motional control.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. M. Reitz, C. Sommer, and C. Genes, Cooperative quantum phenomena in light-matter platforms, PRX Quantum 3, 010201 (2022).
  2. J. Ruostekoski, Cooperative quantum-optical planar arrays of atoms, Phys. Rev. A 108, 030101 (2023).
  3. R. J. Bettles, S. A. Gardiner, and C. S. Adams, Enhanced optical cross section via collective coupling of atomic dipoles in a 2d array, Phys. Rev. Lett. 116, 103602 (2016).
  4. A. Asenjo-Garcia, M. Moreno-Cardoner, A. Albrecht, H. J. Kimble, and D. E. Chang, Exponential improvement in photon storage fidelities using subradiance and “selective radiance” in atomic arrays, Phys. Rev. X 7, 031024 (2017).
  5. P. R. Berman, Resonant interaction between identical atoms including recoil, Phys. Rev. A 55, 4466 (1997).
  6. R. N. Palmer and A. Beige, Enhancing laser sideband cooling in one-dimensional optical lattices via the dipole interaction, Phys. Rev. A 81, 053411 (2010).
  7. D. E. Chang, J. I. Cirac, and H. J. Kimble, Self-organization of atoms along a nanophotonic waveguide, Phys. Rev. Lett. 110, 113606 (2013).
  8. F. m. c. Damanet, D. Braun, and J. Martin, Master equation for collective spontaneous emission with quantized atomic motion, Phys. Rev. A 93, 022124 (2016).
  9. A. T. Gisbert, N. Piovella, and R. Bachelard, Stochastic heating and self-induced cooling in optically bound pairs of atoms, Phys. Rev. A 99, 013619 (2019).
  10. A. T. Gisbert, N. Piovella, and R. Bachelard, Cooperative cooling in a one-dimensional chain of optically bound cold atoms, Phys. Rev. A 102, 013312 (2020).
  11. F. Robicheaux and S. Huang, Atom recoil during coherent light scattering from many atoms, Phys. Rev. A 99, 013410 (2019).
  12. E. Shahmoon, M. D. Lukin, and S. F. Yelin, Chapter one - collective motion of an atom array under laser illumination (Academic Press, 2019) pp. 1–38.
  13. E. Shahmoon, M. D. Lukin, and S. F. Yelin, Quantum optomechanics of a two-dimensional atomic array, Phys. Rev. A 101, 063833 (2020).
  14. D. A. Suresh and F. Robicheaux, Photon-induced atom recoil in collectively interacting planar arrays, Phys. Rev. A 103, 043722 (2021).
  15. C. C. Rusconi, T. Shi, and J. I. Cirac, Exploiting the photonic nonlinearity of free-space subwavelength arrays of atoms, Phys. Rev. A 104, 033718 (2021).
  16. O. Rubies-Bigorda and et. al., Collective cooling of an ensemble of emitters, In preparation .
  17. C. Cohen-Tannoudji, Atomic motion in laser light, Fundamental systems in quantum optics 53, 1 (1990).
  18. C. Gardiner and P. Zoller, The quantum world of ultra-cold atoms and light book II: the physics of quantum-optical devices, Vol. 4 (World Scientific Publishing Company, 2015) pp. 228–240.
  19. The steady state phonon number and cooling rates in the Doppler cooling regime are readily found by expanding n¯ind(d⁢c)=ℛj⁢j+/(ℛj⁢j−−ℛj⁢j+)superscriptsubscript¯𝑛ind𝑑𝑐superscriptsubscriptℛ𝑗𝑗superscriptsubscriptℛ𝑗𝑗superscriptsubscriptℛ𝑗𝑗\bar{n}_{\mathrm{ind}}^{(dc)}=\mathcal{R}_{jj}^{+}/(\mathcal{R}_{jj}^{-}-% \mathcal{R}_{jj}^{+})over¯ start_ARG italic_n end_ARG start_POSTSUBSCRIPT roman_ind end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_d italic_c ) end_POSTSUPERSCRIPT = caligraphic_R start_POSTSUBSCRIPT italic_j italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT / ( caligraphic_R start_POSTSUBSCRIPT italic_j italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT - caligraphic_R start_POSTSUBSCRIPT italic_j italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ) and Γind(d⁢c)=ℛj⁢j−−ℛj⁢j+superscriptsubscriptΓind𝑑𝑐superscriptsubscriptℛ𝑗𝑗superscriptsubscriptℛ𝑗𝑗\Gamma_{\mathrm{ind}}^{(dc)}=\mathcal{R}_{jj}^{-}-\mathcal{R}_{jj}^{+}roman_Γ start_POSTSUBSCRIPT roman_ind end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_d italic_c ) end_POSTSUPERSCRIPT = caligraphic_R start_POSTSUBSCRIPT italic_j italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT - caligraphic_R start_POSTSUBSCRIPT italic_j italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT to leading order in γ0/νsubscript𝛾0𝜈\gamma_{0}/\nuitalic_γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_ν.
  20. See the Supplemental Material for: (i) the analytical derivations for the two-atom system; (ii) a detailed analysis of the role of the transiton dipole moment, the direction of motion and the geometry; (iii) and a discussion on additional cooling strategies..
  21. R. H. Lehmberg, Radiation from an n𝑛nitalic_n-atom system. ii. spontaneous emission from a pair of atoms, Phys. Rev. A 2, 889 (1970).
  22. A. Beige and G. C. Hegerfeldt, Cooperative effects in the light and dark periods of two dipole-interacting atoms, Phys. Rev. A 59, 2385 (1999).
  23. Note that ℛλ⁢1=ℛλ⁢2subscriptℛ𝜆1subscriptℛ𝜆2\mathcal{R}_{\lambda 1}=\mathcal{R}_{\lambda 2}caligraphic_R start_POSTSUBSCRIPT italic_λ 1 end_POSTSUBSCRIPT = caligraphic_R start_POSTSUBSCRIPT italic_λ 2 end_POSTSUBSCRIPT for ν1=ν2subscript𝜈1subscript𝜈2\nu_{1}=\nu_{2}italic_ν start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_ν start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT.
  24. For a subradiant spin mode with collective linewidth γdsubscript𝛾𝑑\gamma_{d}italic_γ start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT and energy shift Jdsubscript𝐽𝑑J_{d}italic_J start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT, the drive is applied at the frequency Δ=−ν¯2+(γd/2)2+JdΔsuperscript¯𝜈2superscriptsubscript𝛾𝑑22subscript𝐽𝑑\Delta=-\sqrt{\bar{\nu}^{2}+(\gamma_{d}/2)^{2}}+J_{d}roman_Δ = - square-root start_ARG over¯ start_ARG italic_ν end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + ( italic_γ start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT / 2 ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG + italic_J start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT.
  25. A. Derevianko and H. Katori, Colloquium: Physics of optical lattice clocks, Rev. Mod. Phys. 83, 331 (2011).
  26. T. D. Karanikolaou, R. J. Bettles, and D. E. Chang, Near-resonant light scattering by an atom in a state-dependent trap (2024), arXiv:2401.06753 [quant-ph] .
  27. O. S. Mishina, Cavity cooling of an atomic array, New Journal of Physics 16, 033021 (2014).
  28. C. Gonzalez-Ballestero, Tutorial: projector approach to open quantum systems (2023), arXiv:2305.19704 [quant-ph] .
  29. J. M. Torres, Closed-form solution of lindblad master equations without gain, Phys. Rev. A 89, 052133 (2014).
  30. D. Manzano, A short introduction to the lindblad master equation, Aip Advances 10 (2020).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com