Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Immune cells interactions in the tumor microenvironment (2405.18452v1)

Published 28 May 2024 in q-bio.CB and physics.bio-ph

Abstract: The tumor microenvironment (TME) plays a critical role in cancer cell proliferation, invasion, and resistance to therapy. A principal component of the TME is the tumor immune microenvironment (TIME), which includes various immune cells such as macrophages. Depending on the signals received from environmental elements like IL-4 or IFN-$\gamma$, macrophages can exhibit pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes. This study uses an enhanced agent-based model to simulate interactions within the TIME, focusing on the dynamic behavior of macrophages. We examine the response of cancer cell populations to alterations in macrophages, categorized into three different behaviors: M0 (initial-inactive), M1 (immune-upholding), and M2 (immune-repressing), as well as environmental differentiations. The results highlight the significant impact of macrophage modulation on tumor proliferation and suggest potential therapeutic strategies targeting these immune cells.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. K. A. Norton, C. Gong, S. Jamalian, and A. S. Popel, “Multiscale agent-based and hybrid modeling of the tumor immune microenvironment,” Processes, vol. 7, pp. 1–23, 2019.
  2. F. R. Balkwill, M. Capasso, and T. Hagemann, “The tumor microenvironment at a glance,” Journal of Cell Science, vol. 125, pp. 5591–5596, 12 2012.
  3. I. M. Chamseddine and K. A. Rejniak, “Hybrid modeling frameworks of tumor development and treatment,” Wiley Interdisciplinary Reviews: Systems Biology and Medicine, vol. 12, pp. 1–16, 2020.
  4. S. Bekisz and L. Geris, “Cancer modeling: From mechanistic to data-driven approaches, and from fundamental insights to clinical applications,” Journal of Computational Science, vol. 46, 10 2020.
  5. M. Kuznetsov, J. Clairambault, and V. Volpert, “Improving cancer treatments via dynamical biophysical models,” Physics of Life Reviews, vol. 39, pp. 1–48, 2021.
  6. D. S. Chen and I. Mellman, “Elements of cancer immunity and the cancer–immune set point,” Nature, vol. 541, no. 7637, pp. 321–330, 2017.
  7. M. Binnewies, E. W. Roberts, K. Kersten, V. Chan, D. F. Fearon, M. Merad, L. M. Coussens, D. I. Gabrilovich, S. Ostrand-Rosenberg, C. C. Hedrick, et al., “Understanding the tumor immune microenvironment (time) for effective therapy,” Nature medicine, vol. 24, no. 5, pp. 541–550, 2018.
  8. T. F. Gajewski, H. Schreiber, and Y.-X. Fu, “Innate and adaptive immune cells in the tumor microenvironment,” Nature immunology, vol. 14, no. 10, pp. 1014–1022, 2013.
  9. T. Chanmee, P. Ontong, K. Konno, and N. Itano, “Tumor-associated macrophages as major players in the tumor microenvironment,” Cancers, vol. 6, no. 3, pp. 1670–1690, 2014.
  10. J. Metzcar, Y. Wang, R. Heiland, and P. Macklin, “A review of cell-based computational modeling in cancer biology,” JCO Clinical Cancer Informatics, pp. 1–13, 2019.
  11. A. Mantovani, T. Schioppa, C. Porta, P. Allavena, and A. Sica, “Role of tumor-associated macrophages in tumor progression and invasion,” Cancer Metastasis Reviews, vol. 21, no. 3-4, pp. 315–322, 2002.
  12. J. W. Pollard, “Tumour-educated macrophages promote tumour progression and metastasis,” Nature Reviews Cancer, vol. 4, no. 1, pp. 71–78, 2004.
  13. R. Noy and J. W. Pollard, “Tumor-associated macrophages: from mechanisms to therapy,” Immunity, vol. 41, no. 1, pp. 49–61, 2014.
  14. S. Chen, A. F. Saeed, Q. Liu, Q. Jiang, H. Xu, G. G. Xiao, L. Rao, and Y. Duo, “Macrophages in immunoregulation and therapeutics,” Springer Nature, pp. 1–35, 2023.
  15. C. D. Mills, “M1 and m2 macrophages: Oracles of health and disease,” Journal of Immunology, vol. 204, no. 2, pp. 311–320, 2000.
  16. F. O. Martinez, L. Helming, and S. Gordon, “Alternative activation of macrophages: An immunologic functional perspective,” Annual Review of Immunology, vol. 27, pp. 451–483, 2008.
  17. F. Castro, A. P. Cardoso, R. M. Gonçalves, K. Serre, and M. J. Oliveira, “Interferon-gamma at the crossroads of tumor immune surveillance or evasion,” Cancer Immunology, Immunotherapy, vol. 67, pp. 127–138, 2018.
  18. K. Schroder, P. J. Hertzog, T. Ravasi, and D. A. Hume, “Interferon-gamma: an overview of signals, mechanisms and functions,” Journal of Leukocyte Biology, vol. 75, pp. 163–189, 2004.
  19. U. Boehm, T. Klamp, M. Groot, and J. C. Howard, “Cellular responses to interferon-gamma,” Annual Review of Immunology, vol. 15, pp. 749–795, 1997.
  20. L. Chen and et al., “Cytokine signaling in immune cells,” Nature Reviews Immunology, vol. 21, pp. 789–805, 2023.
  21. C. G. Cess and S. D. Finley, “Multi-scale modeling of macrophage—t cell interactions within the tumor microenvironment,” PLOS Computational Biology, vol. 16, pp. 1–35, 12 2020.
  22. A. Ghaffarizadeh, R. Heiland, S. H. Friedman, S. M. Mumenthaler, and P. Macklin, “Physicell: An open source physics-based cell simulator for 3-d multicellular systems,” PLOS Computational Biology, vol. 14, pp. 1–31, 02 2018.
  23. Garland Science, 5th ed., 2001.
  24. R. A. Weinberg, The Biology of Cancer. Garland Science, 2nd ed., 2013.
  25. J. A. Doudna and E. Charpentier, “The new frontier of genome engineering with crispr-cas9,” Science, vol. 346, p. 1258096, 2017.
  26. J. Smith and J. Doe, “Clinical applications of cytokines in cancer immunotherapy,” Journal of Immunotherapy, vol. 42, pp. 123–134, 2019.
  27. S.-H. Kim and J.-W. Lee, “Nanoparticle-based delivery of cytokines for cancer immunotherapy,” Advanced Drug Delivery Reviews, vol. 169, pp. 134–144, 2021.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com