Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Joint Radar Sensing, Location, and Communication Resources Optimization in 6G Network (2405.18205v1)

Published 28 May 2024 in eess.SY, cs.SY, and eess.SP

Abstract: The possibility of jointly optimizing location sensing and communication resources, facilitated by the existence of communication and sensing spectrum sharing, is what promotes the system performance to a higher level. However, the rapid mobility of user equipment (UE) can result in inaccurate location estimation, which can severely degrade system performance. Therefore, the precise UE location sensing and resource allocation issues are investigated in a spectrum sharing sixth generation network. An approach is proposed for joint subcarrier and power optimization based on UE location sensing, aiming to minimize system energy consumption. The joint allocation process is separated into two key phases of operation. In the radar location sensing phase, the multipath interference and Doppler effects are considered simultaneously, and the issues of UE's location and channel state estimation are transformed into a convex optimization problem, which is then solved through gradient descent. In the communication phase, a subcarrier allocation method based on subcarrier weights is proposed. To further minimize system energy consumption, a joint subcarrier and power allocation method is introduced, resolved via the Lagrange multiplier method for the non-convex resource allocation problem. Simulation analysis results indicate that the location sensing algorithm exhibits a prominent improvement in accuracy compared to benchmark algorithms. Simultaneously, the proposed resource allocation scheme also demonstrates a substantial enhancement in performance relative to baseline schemes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. F. Liu, C. Masouros, A. P. Petropulu, H. Griffiths, and L. Hanzo, “Joint radar and communication design: Applications, state-of-the-art, and the road ahead,” IEEE Trans. Commun., vol. 68, no. 6, pp. 3834–3862, 2020.
  2. J. Kwak, J. Kim, and S. Chong, “Proximity-aware location based collaborative sensing for energy-efficient mobile devices,” IEEE Trans. Mob. Comput., vol. 18, no. 2, pp. 417–430, 2018.
  3. Z. Chang, Z. Wang, X. Guo, C. Yang, Z. Han, and T. Ristaniemi, “Distributed resource allocation for energy efficiency in OFDMA multicell networks with wireless power transfer,” IEEE J. Sel. Areas Commun., vol. 37, no. 2, pp. 345–356, 2018.
  4. C. Ren and L. Liu, “Towards full passive internet of things: Symbiotic localization and ambient backscatter communication,” IEEE Internet of Things Journal, 2023.
  5. C. Ren, L. Liu, and H. Zhang, “Multimodal interference compatible passive uav network based on location-aware flexibility,” IEEE Wireless Communications Letters, vol. 12, no. 4, pp. 640–643, 2023.
  6. A. Liu, Z. Huang, M. Li, Y. Wan, W. Li, T. X. Han et al., “A survey on fundamental limits of integrated sensing and communication,” IEEE Commun. Surv. Tutorials, vol. 24, no. 2, pp. 994–1034, 2022.
  7. P. Kumari, N. J. Myers, and R. W. Heath, “Adaptive and fast combined waveform-beamforming design for mmWave automotive joint communication-radar,” IEEE J. Sel. Top. Signal Process., vol. 15, no. 4, pp. 996–1012, 2021.
  8. M. Mehrabi, M. Mohammadkarimi, M. Ardakani, and Y. Jing, “Decision directed channel estimation based on deep neural network k𝑘kitalic_k-step predictor for MIMO communications in 5G,” IEEE J. Sel. Areas Commun., vol. 37, no. 11, pp. 2443–2456, 2019.
  9. F. Liu, Y.-F. Liu, A. Li, C. Masouros, and Y. C. Eldar, “Cramér-Rao bound optimization for joint radar-communication beamforming,” IEEE Trans. Signal Process., vol. 70, pp. 240–253, 2021.
  10. F. Liu and C. Masouros, “A tutorial on joint radar and communication transmission for vehicular networks—Part I: Background and fundamentals,” IEEE Commun. Lett., vol. 25, no. 2, pp. 322–326, 2020.
  11. W. Yan, W. Hao, C. Huang, G. Sun, O. Muta, H. Gacanin, and C. Yuen, “Beamforming analysis and design for wideband THz reconfigurable intelligent surface communications,” IEEE J. Sel. Areas Commun., 2023.
  12. Z. Yu, X. Hu, C. Liu, M. Peng, and C. Zhong, “Location sensing and beamforming design for IRS-enabled multi-user ISAC systems,” IEEE Trans. Signal Process., vol. 70, pp. 5178–5193, 2022.
  13. N. Xie, W. Wang, Y. Chen, P. Zhang, and L. Huang, “Confidentiality-preserving edge-based wireless communications for contact tracing systems,” IEEE J. Sel. Areas Commun., vol. 40, no. 11, pp. 3152–3171, 2022.
  14. Y. Yan, G. Yang, H. Wang, and X. Shen, “Semidefinite relaxation for source localization with quantized ToA measurements and transmission uncertainty in sensor networks,” IEEE Trans. Commun., vol. 69, no. 2, pp. 1201–1213, 2020.
  15. S. Salari, F. Chan, Y.-T. Chan, and W. Read, “TDOA estimation with compressive sensing measurements and Hadamard matrix,” IEEE Trans. Aerosp. Electron. Syst., vol. 54, no. 6, pp. 3137–3142, 2018.
  16. M. L. Fowler and X. Hu, “Signal models for TDOA/FDOA estimation,” IEEE Trans. Aerosp. Electron. Syst., vol. 44, no. 4, pp. 1543–1550, 2008.
  17. K. Wu, W. Ni, T. Su, R. P. Liu, and Y. J. Guo, “Efficient angle-of-arrival estimation of lens antenna arrays for wireless information and power transfer,” IEEE J. Sel. Areas Commun., vol. 37, no. 1, pp. 116–130, 2018.
  18. S.-E. Chiu, N. Ronquillo, and T. Javidi, “Active learning and CSI acquisition for mmWave initial alignment,” IEEE J. Sel. Areas Commun., vol. 37, no. 11, pp. 2474–2489, 2019.
  19. T. Qiu, X. Fu, N. D. Sidiropoulos, and D. P. Palomar, “MISO channel estimation and tracking from received signal strength feedback,” IEEE Trans. Signal Process., vol. 66, no. 7, pp. 1691–1704, 2018.
  20. Y. Li, K. Yan, Z. He, Y. Li, Z. Gao, L. Pei, R. Chen, and N. El-Sheimy, “Cost-effective localization using RSS from single wireless access point,” IEEE Trans. Instrum. Meas., vol. 69, no. 5, pp. 1860–1870, 2019.
  21. K. Hong, T. Wang, J. Liu, Y. Wang, and Y. Shen, “A learning-based AoA estimation method for device-free localization,” IEEE Commun. Lett., vol. 26, no. 6, pp. 1264–1267, 2022.
  22. L. Qiao, A. Liao, Z. Li, H. Wang, Z. Gao, X. Gao, Y. Su, P. Xiao, L. You, and D. W. K. Ng, “Sensing user’s activity, channel, and location with near-field extra-large-scale MIMO,” IEEE Trans. Commun., vol. 72, no. 2, pp. 890–906, 2024.
  23. F. Liu, W. Yuan, C. Masouros, and J. Yuan, “Radar-assisted predictive beamforming for vehicle-to-infrastructure links,” in 2020 IEEE International Conference on Communications Workshops (ICC Workshops).   IEEE, 2020, pp. 1–6.
  24. F. Dong and F. Liu, “Localization as a service in perceptive networks: an ISAC resource allocation framework,” in 2022 IEEE ICC Workshops.   IEEE, 2022, pp. 848–853.
  25. F. Dong, F. Liu, Y. Cui, W. Wang, K. Han, and Z. Wang, “Sensing as a service in 6G perceptive networks: A unified framework for ISAC resource allocation,” IEEE Trans. Wireless Commun., 2022.
  26. F. Wang and H. Li, “Power allocation for coexisting multicarrier radar and communication systems in cluttered environments,” IEEE Trans. Signal Process., vol. 69, pp. 1603–1613, 2021.
  27. C. Shi, F. Wang, M. Sellathurai, J. Zhou, and S. Salous, “Power minimization-based robust OFDM radar waveform design for radar and communication systems in coexistence,” IEEE Trans. Signal Process., vol. 66, no. 5, pp. 1316–1330, 2017.
  28. Q. Zhao, A. Tang, and X. Wang, “Reference signal design and power optimization for energy-efficient 5G V2X integrated sensing and communications,” IEEE Trans. Green Commun. Networking, vol. 7, no. 1, pp. 379–392, 2023.
  29. J. Zhu, Y. Cui, J. Mu, L. Hu, and X. Jing, “Power minimization strategy based subcarrier allocation and power assignment for integrated sensing and communication,” in 2023 IEEE WCNC.   IEEE, 2023, pp. 1–6.
  30. X. Hu, C. Liu, M. Peng, and C. Zhong, “IRS-based integrated location sensing and communication for mmWave SIMO systems,” IEEE Trans. Wireless Commun., 2022.
  31. B. Li, X. Wang, Y. Xin, and E. Au, “Value of service maximization in integrated localization and communication system through joint resource allocation,” IEEE Trans. Commun., 2023.
  32. A. Shahmansoori, G. E. Garcia, G. Destino, G. Seco-Granados, and H. Wymeersch, “Position and orientation estimation through millimeter-wave MIMO in 5G systems,” IEEE Trans. Wireless Commun., vol. 17, no. 3, pp. 1822–1835, 2018.
  33. M. Temiz, E. Alsusa, and M. W. Baidas, “Optimized precoders for massive MIMO OFDM dual radar-communication systems,” IEEE Trans. Commun., vol. 69, no. 7, pp. 4781–4794, 2021.
  34. Q. Liu, R. Liu, Y. Zhang, Y. Yuan, Z. Wang, H. Yang, L. Ye, M. Guizani, and J. S. Thompson, “Management of positioning functions in cellular networks for time-sensitive transportation applications,” IEEE Trans. Intell. Transp. Syst., vol. 24, no. 11, pp. 13 260–13 275, 2023.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com