Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sparsification of Phylogenetic Covariance Matrices of $k$-Regular Trees (2405.17847v1)

Published 28 May 2024 in q-bio.PE, cs.DM, math.CO, and math.PR

Abstract: Consider a tree $T=(V,E)$ with root $\circ$ and edge length function $\ell:E\to\mathbb{R}+$. The phylogenetic covariance matrix of $T$ is the matrix $C$ with rows and columns indexed by $L$, the leaf set of $T$, with entries $C(i,j):=\sum{e\in[i\wedge j,o]}\ell(e)$, for each $i,j\in L$. Recent work [15] has shown that the phylogenetic covariance matrix of a large, random binary tree $T$ is significantly sparsified with overwhelmingly high probability under a change-of-basis with respect to the so-called Haar-like wavelets of $T$. This finding notably enables manipulating the spectrum of covariance matrices of large binary trees without the necessity to store them in computer memory but instead performing two post-order traversals of the tree. Building on the methods of [15], this manuscript further advances their sparsification result to encompass the broader class of $k$-regular trees, for any given $k\ge2$. This extension is achieved by refining existing asymptotic formulas for the mean and variance of the internal path length of random $k$-regular trees, utilizing hypergeometric function properties and identities.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (10)
  1. D. Aldous and B. Pittel. The critical beta-splitting random tree: Heights and related results, 2023.
  2. D. J. Aldous. The critical beta-splitting random tree II: Overview and open problems, 2023.
  3. M. Drmota. Random Trees: An Interplay between Combinatorics and Probability. Springer-Verlag/Wein, 2009.
  4. R. J. Evans and D. Stanton. Asymptotic formulas for zero-balanced hypergeometric series. SIAM J. Math. Anal., 1984.
  5. P. Flajolet and R. Sedegwick. Analytic Combinatorics. Cambridge University Press, 2009.
  6. E. Gorman and M. E. Lladser. Interpretable metric learning in comparative metagenomics: The adaptive Haar-like distance. PLoS Comput Biol 20(5): e1011543, 2024.
  7. L. J. Harmon. Phylogenetic Comparative Methods. CreateSpace Independent Publishing Platform, 2019.
  8. E. Hille. Analytic function theory. Vol. 1. Introduction to Higher Mathematics. Ginn and Company, 1959.
  9. S. Svihla and M. E. Lladser. Sparsification of phylogenetic covariance matrices of k𝑘kitalic_k-ary trees. In preparation.
  10. E. W. Weisstein. Hypergeometric function. https://mathworld.wolfram.com/HypergeometricFunction.html. Accessed: September 2023.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com