Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast Samplers for Inverse Problems in Iterative Refinement Models (2405.17673v2)

Published 27 May 2024 in cs.CV, cs.LG, and stat.ML

Abstract: Constructing fast samplers for unconditional diffusion and flow-matching models has received much attention recently; however, existing methods for solving inverse problems, such as super-resolution, inpainting, or deblurring, still require hundreds to thousands of iterative steps to obtain high-quality results. We propose a plug-and-play framework for constructing efficient samplers for inverse problems, requiring only pre-trained diffusion or flow-matching models. We present Conditional Conjugate Integrators, which leverage the specific form of the inverse problem to project the respective conditional diffusion/flow dynamics into a more amenable space for sampling. Our method complements popular posterior approximation methods for solving inverse problems using diffusion/flow models. We evaluate the proposed method's performance on various linear image restoration tasks across multiple datasets, employing diffusion and flow-matching models. Notably, on challenging inverse problems like 4x super-resolution on the ImageNet dataset, our method can generate high-quality samples in as few as 5 conditional sampling steps and outperforms competing baselines requiring 20-1000 steps. Our code will be publicly available at https://github.com/mandt-lab/c-pigdm

Citations (1)

Summary

We haven't generated a summary for this paper yet.