RTL-Repo: A Benchmark for Evaluating LLMs on Large-Scale RTL Design Projects (2405.17378v1)
Abstract: LLMs have demonstrated potential in assisting with Register Transfer Level (RTL) design tasks. Nevertheless, there remains to be a significant gap in benchmarks that accurately reflect the complexity of real-world RTL projects. To address this, this paper presents RTL-Repo, a benchmark specifically designed to evaluate LLMs on large-scale RTL design projects. RTL-Repo includes a comprehensive dataset of more than 4000 Verilog code samples extracted from public GitHub repositories, with each sample providing the full context of the corresponding repository. We evaluate several state-of-the-art models on the RTL-Repo benchmark, including GPT-4, GPT-3.5, Starcoder2, alongside Verilog-specific models like VeriGen and RTLCoder, and compare their performance in generating Verilog code for complex projects. The RTL-Repo benchmark provides a valuable resource for the hardware design community to assess and compare LLMs' performance in real-world RTL design scenarios and train LLMs specifically for Verilog code generation in complex, multi-file RTL projects. RTL-Repo is open-source and publicly available on Github.
- L. Josipović, A. Guerrieri, and P. Ienne, “From c/c++ code to high-performance dataflow circuits,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 41, no. 7, pp. 2142–2155, 2022.
- T. Zheng, G. Zhang, T. Shen, X. Liu, B. Y. Lin, J. Fu, W. Chen, and X. Yue, “Opencodeinterpreter: Integrating code generation with execution and refinement,” https://arxiv.org/abs/2402.14658, 2024.
- E. Nijkamp, B. Pang, H. Hayashi, L. Tu, H. Wang, Y. Zhou, S. Savarese, and C. Xiong, “Codegen: An open large language model for code with multi-turn program synthesis,” in The Eleventh International Conference on Learning Representations, 2023. [Online]. Available: https://openreview.net/forum?id=iaYcJKpY2B{_}
- A. Lozhkov, R. Li, L. B. Allal, F. Cassano, J. Lamy-Poirier, N. Tazi, A. Tang, D. Pykhtar, J. Liu, Y. Wei, T. Liu, M. Tian, D. Kocetkov, A. Zucker, Y. Belkada, Z. Wang, Q. Liu, D. Abulkhanov, I. Paul, Z. Li, W.-D. Li, M. Risdal, J. Li, J. Zhu, T. Y. Zhuo, E. Zheltonozhskii, N. O. O. Dade, W. Yu, L. Krauß, N. Jain, Y. Su, X. He, M. Dey, E. Abati, Y. Chai, N. Muennighoff, X. Tang, M. Oblokulov, C. Akiki, M. Marone, C. Mou, M. Mishra, A. Gu, B. Hui, T. Dao, A. Zebaze, O. Dehaene, N. Patry, C. Xu, J. McAuley, H. Hu, T. Scholak, S. Paquet, J. Robinson, C. J. Anderson, N. Chapados, M. Patwary, N. Tajbakhsh, Y. Jernite, C. M. Ferrandis, L. Zhang, S. Hughes, T. Wolf, A. Guha, L. von Werra, and H. de Vries, “Starcoder 2 and the stack v2: The next generation,” 2024.
- S. Thakur, B. Ahmad, H. Pearce, B. Tan, B. Dolan-Gavitt, R. Karri, and S. Garg, “Verigen: A large language model for verilog code generation,” ACM Trans. Des. Autom. Electron. Syst., vol. 29, no. 3, apr 2024. [Online]. Available: https://doi.org/10.1145/3643681
- S. Liu, W. Fang, Y. Lu, Q. Zhang, H. Zhang, and Z. Xie, “Rtlcoder: Outperforming gpt-3.5 in design rtl generation with our open-source dataset and lightweight solution,” 2024.
- M. Liu, T.-D. Ene, R. Kirby, C. Cheng, N. Pinckney, R. Liang, J. Alben, H. Anand, S. Banerjee, I. Bayraktaroglu, B. Bhaskaran, B. Catanzaro, A. Chaudhuri, S. Clay, B. Dally, L. Dang, P. Deshpande, S. Dhodhi, S. Halepete, E. Hill, J. Hu, S. Jain, A. Jindal, B. Khailany, G. Kokai, K. Kunal, X. Li, C. Lind, H. Liu, S. Oberman, S. Omar, S. Pratty, J. Raiman, A. Sarkar, Z. Shao, H. Sun, P. P. Suthar, V. Tej, W. Turner, K. Xu, and H. Ren, “Chipnemo: Domain-adapted llms for chip design,” 2024.
- Y. Lu, S. Liu, Q. Zhang, and Z. Xie, “Rtllm: An open-source benchmark for design rtl generation with large language model,” in Proceedings of the 29th Asia and South Pacific Design Automation Conference, ser. ASPDAC ’24. IEEE Press, 2024, p. 722–727. [Online]. Available: https://doi.org/10.1109/ASP-DAC58780.2024.10473904
- M. Liu, N. Pinckney, B. Khailany, and H. Ren, “Verilogeval: Evaluating large language models for verilog code generation,” 2023.
- Y. Ding, Z. Wang, W. U. Ahmad, H. Ding, M. Tan, N. Jain, M. K. Ramanathan, R. Nallapati, P. Bhatia, D. Roth, and B. Xiang, “Crosscodeeval: A diverse and multilingual benchmark for cross-file code completion,” in Thirty-seventh Conference on Neural Information Processing Systems Datasets and Benchmarks Track, 2023. [Online]. Available: https://openreview.net/forum?id=wgDcbBMSfh
- T. Liu, C. Xu, and J. McAuley, “Repobench: Benchmarking repository-level code auto-completion systems,” 2024. [Online]. Available: https://arxiv.org/abs/2306.03091
- S. Thakur, B. Ahmad, Z. Fan, H. Pearce, B. Tan, R. Karri, B. Dolan-Gavitt, and S. Garg, “Benchmarking large language models for automated verilog rtl code generation,” in 2023 Design, Automation and Test in Europe Conference and Exhibition, DATE 2023 - Proceedings, ser. Proceedings -Design, Automation and Test in Europe, DATE. Institute of Electrical and Electronics Engineers Inc., 2023, publisher Copyright: © 2023 EDAA.; 2023 Design, Automation and Test in Europe Conference and Exhibition, DATE 2023 ; Conference date: 17-04-2023 Through 19-04-2023.
- T. Li, G. Zhang, Q. D. Do, X. Yue, and W. Chen, “Long-context llms struggle with long in-context learning,” 2024.
- S. An, Z. Ma, Z. Lin, N. Zheng, and J.-G. Lou, “Make your llm fully utilize the context,” 2024.
- S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco, C. B. Clement, D. Drain, D. Jiang, D. Tang, G. Li, L. Zhou, L. Shou, L. Zhou, M. Tufano, M. Gong, M. Zhou, N. Duan, N. Sundaresan, S. K. Deng, S. Fu, and S. Liu, “Codexglue: A machine learning benchmark dataset for code understanding and generation,” CoRR, vol. abs/2102.04664, 2021.
- Ahmed Allam (18 papers)
- Mohamed Shalan (3 papers)