Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s
GPT-5 High 42 tok/s Pro
GPT-4o 109 tok/s
GPT OSS 120B 477 tok/s Pro
Kimi K2 222 tok/s Pro
2000 character limit reached

Renormalized stochastic pressure equation with log-correlated Gaussian coefficients (2405.17195v3)

Published 27 May 2024 in math.PR and math.AP

Abstract: We study periodic solutions to the following divergence-form stochastic partial differential equation with Wick-renormalized gradient on the $d$-dimensional flat torus $\mathbb{T}d$, [ -\nabla\cdot\left(e{\diamond (- \beta X) }\diamond\nabla U\right)=\nabla \cdot (e{\diamond (- \beta X)} \diamond \mathbf{F}), ] where $X$ is the log-correlated Gaussian field, $\mathbf{F}$ is a random vector field representing the flux, the in/out-flow of fluid per unit area per unit time, and $\diamond$ denotes the Wick product. The problem is a variant of the stochastic pressure equation, in which $U$ is modeling the pressure of a creeping water-flow in crustal rock that occurs in enhanced geothermal heating. In the original model, the Wick exponential term $e{\diamond(-\beta X)}$ is modeling the random permeability of the rock. The porosity field is given by a log-correlated Gaussian random field $\beta X$, where $\beta<\sqrt{d}$. We use elliptic regularity theory in order to define a notion of a solution to this (a priori very ill-posed) problem, via modifying the $S$-transform from Gaussian white noise analysis, and then establish the existence and uniqueness of solutions. Moreover, we show that the solution to the problem can be expressed in terms of the Gaussian multiplicative chaos measure.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. 1D stochastic pressure equation with log-correlated Gaussian coefficients. Preprint, pages 1–37, 2024. https://arxiv.org/abs/1602.07323.
  2. N. Berestycki. An elementary approach to Gaussian multiplicative chaos. Electronic Communications in Probability, 22:1 – 12, 2017.
  3. H. Brezis and P. Mironescu. Gagliardo-Nirenberg inequalities and non-inequalities: the full story. Annales de l’Institut Henri Poincaré C, Analyse non linéaire, 35(5):1355–1376, 2018.
  4. Renormalising SPDEs in regularity structures. J. Eur. Math. Soc. (JEMS), 23(3):869–947, 2021.
  5. Algebraic renormalisation of regularity structures. Invent. Math., 215(3):1039–1156, 2019.
  6. Log-correlated Gaussian fields: An overview. In J.-B. Bost, H. Hofer, F. Labourie, Y. Le Jan, X. Ma, W. Zhang (eds), Geometry, Analysis and Probability: In Honor of Jean-Michel Bismut, pages 191–216. Springer International Publishing, Cham, 2017.
  7. The Wiener test for degenerate elliptic equations. Annales de l’Institut Fourier, 32(3):151–182, 1982.
  8. The local regularity of solutions of degenerate elliptic equations. Communications in Partial Differential Equations, 7(1):77–116, 1982.
  9. W. E. Fitzgibbon and M. F. Wheeler, editors. Modeling and analysis of diffusive and advective processes in geosciences. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992.
  10. M. Grüter and K.-O. Widman. The Green function for uniformly elliptic equations. Manuscripta mathematica, 37(3):303–342, 1982.
  11. Paracontrolled distributions and singular PDEs. Forum Math. Pi, 3:e6, 75, 2015.
  12. M. Hairer. A theory of regularity structures. Invent. Math., 198(2):269–504, 2014.
  13. Q. Han and F. Lin. Elliptic partial differential equations, volume 1. American Mathematical Soc., 2011.
  14. Nonlinear potential theory of degenerate elliptic equations. Dover Publications, Inc., Mineola, NY, 2006. Unabridged republication of the 1993 original.
  15. T. Hewett et al. Fractal distributions of reservoir heterogeneity and their influence on fluid transport. In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 1986.
  16. Stochastic partial differential equations. Universitext. Springer, New York, second edition, 2010. A modeling, white noise functional approach.
  17. Y. Hu and B. Øksendal. Wick approximation of quasilinear stochastic differential equations. In Stochastic analysis and related topics, V (Silivri, 1994), volume 38 of Progr. Probab., pages 203–231. Birkhäuser Boston, Boston, MA, 1996.
  18. L. Isserlis. On a formula for the product-moment coefficient of any order of a normal frequency distribution in any number of variables. Biometrika, 12(1–2):134–139, 1918.
  19. S. Janson. Gaussian Hilbert spaces, volume 129 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1997.
  20. Imaginary multiplicative chaos: Moments, regularity and connections to the ising model. Ann. Appl. Probab., 30(5):2099–2164, 10 2020.
  21. J. Kinnunen. A stability result on Muckenhoupt’s weights. Publ. Mat., 42(1):153–163, 1998.
  22. Wick calculus in Gaussian analysis. Acta applicandae mathematicae, 44(3):269–294, 1996.
  23. I. T. Kukkonen and M. Pentti. St1 deep heat project: Geothermal energy to the district heating network in espoo. IOP Conference Series: Earth and Environmental Science, 703(1):012035, 2021.
  24. A. Kupiainen. Renormalization group and stochastic PDEs. Ann. Henri Poincaré, 17(3):497–535, 2016.
  25. Local conformal structure of Liouville quantum gravity. Comm. Math. Phys., 371(3):1005–1069, 2019.
  26. P. Leary. Deep borehole log evidence for fractal distribution of fractures in crystalline rock. Geophysical Journal International, 107(3):615–627, 1991.
  27. A physical basis for the Gutenberg-Richter fractal scaling. In Proceedings of the 45rd Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, USA, pages 10–12, 2020.
  28. P. C. Leary. Basement rock fracture structure from Cajon Pass, California and Siljan Ring, Sweden borehole geophysical logs. In SEG Technical Program Expanded Abstracts 1990, pages 153–155. Society of Exploration Geophysicists, 1990.
  29. T. Lévy. Filtration in a porous fissured rock: influence of the fissures connexity. European J. Mech. B Fluids, 9(4):309–327, 1990.
  30. T. Lévy and J.-C. Wodié. A model for porous rocks with thin fissures. European J. Mech. B Fluids, 13(3):261–273, 1994.
  31. Fractional Gaussian fields: a survey. Probability Surveys, 13:1–56, 2016.
  32. A remark on Gibbs measures with log-correlated Gaussian fields. Forum of Mathematics, Sigma, 12:e50, 2024.
  33. F. Otto and H. Weber. Quasilinear SPDEs via rough paths. Arch. Ration. Mech. Anal., 232(2):873–950, 2019.
  34. R. Rhodes and V. Vargas. Gaussian multiplicative chaos and applications: a review. Probab. Surv., 11:315–392, 2014.
  35. R. Rhodes and V. Vargas. Lecture notes on Gaussian multiplicative chaos and Liouville Quantum Gravity. Preprint, pages 1–23, 2016. https://arxiv.org/abs/1602.07323.
  36. T. Runst and W. Sickel. Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations. De Gruyter, Berlin, New York, 1996.
  37. Gaussian scaling noise model of seismic reflection sequences: Evidence from well logs. Geophysics, 55(4):480–484, 1990.
  38. A. Torchinsky. Real-variable Methods in Harmonic Analysis. Academic Press, Orlando, FL, 1986.
  39. G. C. Wick. The evaluation of the collision matrix. Phys. Rev. (2), 80:268–272, 1950.
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com