Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Some further progress for existence and boundedness of solutions to a two-dimensional chemotaxis-(Navier-)Stokes system modeling coral fertilization (2405.17175v1)

Published 27 May 2024 in math.AP

Abstract: In this paper, we investigate the effects exerted by the interplay among Laplacian diffusion, chemotaxis cross diffusion and the fluid dynamic mechanism on global existence and boundedness of the solutions. The mathematical model considered herein appears as \begin{align}\left{ \begin{array}{l} n_t+u\cdot\nabla n=\Delta n-\nabla\cdot( nS(n)\nabla c)-nm,\quad x\in \Omega, t>0, \disp{ c_{ t}+u\cdot\nabla c=\Delta c-c+w},\quad x\in \Omega, t>0, \disp{w_{t}+u\cdot\nabla w=\Delta w-nw},\quad x\in \Omega, t>0,\ u_t+\kappa(u \cdot \nabla)u+\nabla P=\Delta u+(n+m)\nabla \phi,\quad x\in \Omega, t>0,\ \nabla\cdot u=0,\quad x\in \Omega, t>0,\ \end{array}\right.\eqno(KSNF) \end{align} in a bounded domain $\Omega\subset \mathbb{R}2$ with a smooth boundary, which describes the process of coral fertilization occurring in ocean flow. Here $\kappa\in \mathbb{R}$ is a given constant, $\phi\in W{2,\infty}(\Omega)$and $S(n) $ is a scalar function satisfies $|S(n)|\leq C_S(1+n){-\alpha}$ {for all} $n\geq 0$ with some $C_S>0$ and $\alpha\in\mathbb{R}$. It is proved that if either $\alpha>-1,\kappa=0$ or $\alpha\geq-\frac{1}{2},\kappa\in\mathbb{R}$ is satisfied,then for any reasonably smooth initial data, the corresponding Neumann-Neumann-Neumann-Dirichlet initial-boundary problem $(KSNF)$ possesses a globally classical solution. In case of the stronger assumption $\alpha>-1,\kappa = 0$ or $\alpha>-\frac{1}{2},\kappa \in\mathbb{R},$ we moreover show that the corresponding initial-boundary problem admits a unique global classical solution which is uniformly bounded on $\Omega\times(0,\infty)$.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com