Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dual VC Dimension Obstructs Sample Compression by Embeddings (2405.17120v1)

Published 27 May 2024 in cs.DM and cs.LG

Abstract: This work studies embedding of arbitrary VC classes in well-behaved VC classes, focusing particularly on extremal classes. Our main result expresses an impossibility: such embeddings necessarily require a significant increase in dimension. In particular, we prove that for every $d$ there is a class with VC dimension $d$ that cannot be embedded in any extremal class of VC dimension smaller than exponential in $d$. In addition to its independent interest, this result has an important implication in learning theory, as it reveals a fundamental limitation of one of the most extensively studied approaches to tackling the long-standing sample compression conjecture. Concretely, the approach proposed by Floyd and Warmuth entails embedding any given VC class into an extremal class of a comparable dimension, and then applying an optimal sample compression scheme for extremal classes. However, our results imply that this strategy would in some cases result in a sample compression scheme at least exponentially larger than what is predicted by the sample compression conjecture. The above implications follow from a general result we prove: any extremal class with VC dimension $d$ has dual VC dimension at most $2d+1$. This bound is exponentially smaller than the classical bound $2{d+1}-1$ of Assouad, which applies to general concept classes (and is known to be unimprovable for some classes). We in fact prove a stronger result, establishing that $2d+1$ upper bounds the dual Radon number of extremal classes. This theorem represents an abstraction of the classical Radon theorem for convex sets, extending its applicability to a wider combinatorial framework, without relying on the specifics of Euclidean convexity. The proof utilizes the topological method and is primarily based on variants of the Topological Radon Theorem.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (49)
  1. Point selections and weak ε𝜀\varepsilonitalic_ε-nets for convex hulls. Combinatorics, Probability and Computing, 1(03):189–200, 1992.
  2. Sign rank versus Vapnik-Chervonenkis dimension. Sbornik: Mathematics, 208(12):1724, 2017.
  3. Patrick Assouad. Densité et dimension. Annales de l’Institut Fourier (Grenoble), 33(3):233–282, 1983.
  4. On a common generalization of Borsuk’s and Radon’s theorem. Acta Mathematica Academiae Scientiarum Hungarica, 34(3):347–350, 1979. doi: 10.1007/BF01896131. URL https://doi.org/10.1007/BF01896131.
  5. On the number of halving planes. Combinatorica, 10(2):175–183, 1990.
  6. Combinatorial Variability of Vapnik-Chervonenkis Classes with Applications to Sample Compression Schemes. Discrete Applied Mathematics, 86(1):3–25, 1998. doi: 10.1016/S0166-218X(98)00000-6. URL http://dx.doi.org/10.1016/S0166-218X(98)00000-6.
  7. Defect Sauer results. Journal of Combinatorial Theory, Series A, 72(2):189–208, 1995.
  8. Reverse Kleitman Inequalities. Proceedings of the London Mathematical Society, s3-58(1):153–168, 01 1989. ISSN 0024-6115. doi: 10.1112/plms/s3-58.1.153. URL https://doi.org/10.1112/plms/s3-58.1.153.
  9. Proper learning, Helly number, and an optimal SVM bound. In Proceedings of the 33rdsuperscript33rd33^{{\rm rd}}33 start_POSTSUPERSCRIPT roman_rd end_POSTSUPERSCRIPT Conference on Learning Theory, 2020.
  10. Unlabeled sample compression schemes and corner peelings for ample and maximum classes. J. Comput. Syst. Sci., 127:1–28, 2022. doi: 10.1016/J.JCSS.2022.01.003. URL https://doi.org/10.1016/j.jcss.2022.01.003.
  11. Sample compression schemes for balls in graphs. SIAM J. Discret. Math., 37(4):2585–2616, 2023. doi: 10.1137/22M1527817. URL https://doi.org/10.1137/22m1527817.
  12. Two-dimensional partial cubes. The Electronic Journal of Combinatorics, pages 3–29, 2020.
  13. Labeled sample compression schemes for complexes of oriented matroids. CoRR, abs/2110.15168, 2021. URL https://arxiv.org/abs/2110.15168.
  14. Ample completions of oriented matroids and complexes of uniform oriented matroids. SIAM Journal of Discrete Mathematics, 36(1):509–535, 2022.
  15. Bogdan Chornomaz. What convex geometries tell about shattering-extremal systems. The Electronic Journal of Combinatorics, pages P3–40, 2022.
  16. Helly’s Theorem and Its Relatives. Proceedings of symposia in pure mathematics: Convexity. American Mathematical Society, 1963. URL https://books.google.com/books?id=I1l5HAAACAAJ.
  17. Andreas W. M. Dress. Towards a theory of holistic clustering. In Boris G. Mirkin, Fred R. McMorris, Fred S. Roberts, and Andrey Rzhetsky, editors, Mathematical Hierarchies and Biology, Proceedings of a DIMACS Workshop, November 13-15, 1996, volume 37 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 271–290. DIMACS/AMS, 1996. doi: 10.1090/DIMACS/037/19. URL https://doi.org/10.1090/dimacs/037/19.
  18. Sample compression, learnability, and the Vapnik-Chervonenkis dimension. Machine Learning, 21(3):269–304, 1995.
  19. Vapnik-Chervonenkis dimension and (pseudo-) hyperplane arrangements. Discrete Comput. Geom., 12(4):399–432, 1994. doi: 10.1007/BF02574389.
  20. G𝐺Gitalic_G-coincidences for maps of homotopy spheres into CW-complexes. Proceedings of the American Mathematical Society, 130(10):3111–3115, 2002.
  21. Craig R. Guilbault. An elementary deduction of the Topological Radon Theorem from Borsuk–Ulam. Discrete & Computational Geometry, 43:951–954, 2010.
  22. Eduard Helly. Über mengen konvexer körper mit gemeinschaftlichen punkte. Jahresbericht der Deutschen Mathematiker-Vereinigung, 32:175–176, 1923. URL http://eudml.org/doc/145659.
  23. Radon numbers and the fractional Helly theorem. Israel Journal of Mathematics, 241(1):433–447, 2021.
  24. Antipodal coincidence for maps of spheres into complexes. In preprint (Lecture at the Conference on Topological Fixed Point Theory and its Applications in Torun, 1993.
  25. Axiomatic convexity theory and relationships between the Carathéodory, Helly, and Radon numbers. Pacific Journal of Mathematics, 38(2):471–485, 1971.
  26. Unlabeled compression schemes for maximum classes. Journal of Machine Learning Research, 8:2047–2081, 2007. URL http://dl.acm.org/citation.cfm?id=1314566.
  27. James F. Lawrence. Lopsided sets and orthant-intersection of convex sets. Pacific J. Math., 104:155–173, 1983.
  28. Subdivisions and triangulations of polytopes. In Handbook of discrete and computational geometry, pages 415–447. Chapman and Hall/CRC, 2017.
  29. Friedrich W. Levi. On Helly’s theorem and the axioms of convexity. J. Indian Math. Soc, 15:65–76, 1951.
  30. Relating data compression and learnability. Unpublished manuscript, 1986.
  31. Using the Borsuk-Ulam theorem: lectures on topological methods in combinatorics and geometry, volume 2003. Springer, 2003.
  32. Shay Moran. Shattering-extremal systems. arXiv preprint, 1211.2980, 2012.
  33. Labeled compression schemes for extremal classes. In Proceedings of the 27thsuperscript27th27^{{\rm th}}27 start_POSTSUPERSCRIPT roman_th end_POSTSUPERSCRIPT International Conference on Algorithmic Learning Theory, pages 34–49. Springer, 2016.
  34. Sample compression schemes for VC classes. Journal of the ACM, 63(3):1–10, 2016.
  35. On weak ϵitalic-ϵ\epsilonitalic_ϵ-nets and the Radon number. Discret. Comput. Geom., 64(4):1125–1140, 2020. doi: 10.1007/S00454-020-00222-Y. URL https://doi.org/10.1007/s00454-020-00222-y.
  36. Alain Pajor. Sous-espaces ℓ1nsuperscriptsubscriptℓ1𝑛\ell_{1}^{n}roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT des Espaces de Banach. Travaux en Cours. Hermann, Paris, 1985.
  37. Johann Radon. Mengen konvexer körper, die einen gemeinsamen punkt enthalten. Mathematische Annalen, 83(1):113–115, Mar 1921. ISSN 1432-1807. doi: 10.1007/BF01464231. URL https://doi.org/10.1007/BF01464231.
  38. Benjamin I. P. Rubinstein and J. Hyam Rubinstein. A geometric approach to sample compression. Journal of Machine Learning Research, 13:1221–1261, 2012. URL http://dl.acm.org/citation.cfm?id=2343686.
  39. Shifting: One-inclusion mistake bounds and sample compression. J. Comput. Syst. Sci., 75(1):37–59, 2009. doi: 10.1016/J.JCSS.2008.07.005. URL https://doi.org/10.1016/j.jcss.2008.07.005.
  40. Bounding embeddings of VC classes into maximum classes. Measures of Complexity: Festschrift for Alexey Chervonenkis, pages 303–325, 2015.
  41. Joachim Hyam Rubinstein and Benjamin I. P. Rubinstein. Unlabelled sample compression schemes for intersection-closed classes and extremal classes. In NeurIPS, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/54d6a55225cebbdc16fbb0e45c5bdf2b-Abstract-Conference.html.
  42. Norbert Sauer. On the density of families of sets. Journal of Combinatorial Theory (A), 13(1):145–147, 1972.
  43. Understanding Machine Learning - From Theory to Algorithms. Cambridge University Press, 2014. ISBN 978-1-10-705713-5.
  44. Saharon Shelah. A combinatorial problem, stability and order for models and theories in infinitary languages. Pacific J. Math., 41(1):247–261, 1972. doi: 10.2140/pjm.1972.41.247.
  45. M.L.J. van de Vel. Theory of Convex Structures, volume 50 of North-Holland mathematical library. North-Holland, 1993. ISBN 9780444815057. URL https://books.google.com/books?id=xt9-lAEACAAJ.
  46. On the uniform convergence of relative frequencies of events to their probabilities. Proc. USSR Acad. Sci., 181(4):781–783, 1968.
  47. Some generalizations of the Borsuk-Ulam theorem. Plubl. Math. Debrecen, 78:583–593, 2011.
  48. Manfred K. Warmuth. Compressing to VC dimension many points. In COLT/Kernel, pages 743–744, 2003. doi: 10.1007/978-3-540-45167-9˙60. URL http://dx.doi.org/10.1007/978-3-540-45167-9_60.
  49. Avi Wigderson. A Theory Revolutionizing Technology and Science. Princeton University Press, Princeton, 2019. ISBN 9780691192543. doi: doi:10.1515/9780691192543. URL https://doi.org/10.1515/9780691192543.

Summary

We haven't generated a summary for this paper yet.