Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Kernel-based Optimally Weighted Conformal Prediction Intervals (2405.16828v2)

Published 27 May 2024 in cs.LG, math.ST, stat.ML, and stat.TH

Abstract: In this work, we present a novel conformal prediction method for time-series, which we call Kernel-based Optimally Weighted Conformal Prediction Intervals (KOWCPI). Specifically, KOWCPI adapts the classic Reweighted Nadaraya-Watson (RNW) estimator for quantile regression on dependent data and learns optimal data-adaptive weights. Theoretically, we tackle the challenge of establishing a conditional coverage guarantee for non-exchangeable data under strong mixing conditions on the non-conformity scores. We demonstrate the superior performance of KOWCPI on real and synthetic time-series data against state-of-the-art methods, where KOWCPI achieves narrower confidence intervals without losing coverage.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. B. Abdous and R. Theodorescu. Note on the spatial quantile of a random vector. Statist. Probab. Lett., 13(4):333–336, 1992.
  2. Conformal PID Control for Time Series Prediction. In Advances in Neural Information Processing Systems, 2023.
  3. A. N. Angelopoulos and S. Bates. Conformal Prediction: A Gentle Introduction. Foundations and Trends® in Machine Learning, 16(4):494–591, 2023.
  4. Conformal Prediction for Time Series with Modern Hopfield Networks. In Advances in Neural Information Processing Systems, 2023.
  5. Conformal prediction beyond exchangeability. The Annals of Statistics, 51(2):816 – 845, 2023.
  6. Improved Online Conformal Prediction via Strongly Adaptive Online Learning. In Proceedings of the 40th International Conference on Machine Learning, 2023.
  7. Z. Cai. Weighted Nadaraya-Watson regression estimation. Statistics & Probability Letters, 51(3):307–318, 2001.
  8. Z. Cai. Regression quantiles for time series. Econometric Theory, 18(1):169–192, 2002.
  9. Z. Cai and R. C. Tiwari. Application of a local linear autoregressive model to BOD time series. Environmetrics, 11(3):341–350, 2000.
  10. Local Polynomial Kernel Regression for Generalized Linear Models and Quasi-Likelihood Functions. Journal of the American Statistical Association, 90(429):141–150, 1995.
  11. Achieving Risk Control in Online Learning Settings. arXiv preprint arXiv:2205.09095, 2022.
  12. I. Gibbs and E. Candès. Adaptive Conformal Inference Under Distribution Shift. Advances in Neural Information Processing Systems, 34:1660–1672, 2021.
  13. I. Gibbs and E. Candès. Conformal Inference for Online Prediction with Arbitrary Distribution Shifts. arXiv preprint arXiv:2208.08401, 2022.
  14. Conformal Prediction With Conditional Guarantees. arXiv preprint arXiv:2305.12616, 2023.
  15. L. Guan. Localized conformal prediction: a generalized inference framework for conformal prediction. Biometrika, 110(1):33–50, 2023.
  16. Methods for Estimating a Conditional Distribution Function. Journal of the American Statistical Association, 94(445):154–163, 1999.
  17. M. Harries. SPLICE-2 Comparative Evaluation: Electricity Pricing. Technical report, University of New South Wales, School of Computer Science and Engineering, 1999.
  18. T. J. Hastie. Generalized additive models. CRC Press, 1990.
  19. Independent and Stationary Sequences of Random Variables. Wolters-Noordhoff., 1971.
  20. Predictive inference is free with the jackknife+-after-bootstrap. Advances in Neural Information Processing Systems, 33:4138–4149, 2020.
  21. Adaptive, Distribution-Free Prediction Intervals for Deep Networks. In Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics, 2020.
  22. Distribution-free inference with hierarchical data. arXiv preprint arXiv:2306.06342, 2023.
  23. J. Lei and L. Wasserman. Distribution-free prediction bands for non-parametric regression. Journal of the Royal Statistical Society Series B: Statistical Methodology, 76(1):71–96, 2014.
  24. Distribution-Free Prediction Sets. Journal of the American Statistical Association, 108(501):278–287, 2013.
  25. E. Masry. Recursive probability density estimation for weakly dependent stationary processes. IEEE Transactions on Information Theory, 32(2):254–267, 1986.
  26. E. A. Nadaraya. On Estimating Regression. Theory of Probability & Its Applications, 9(1):141–142, 1964.
  27. F. Orabona and D. Pál. Scale-free online learning. Theoretical Computer Science, 716:50–69, 2018.
  28. Conformalized Quantile Regression. In Advances in Neural Information Processing Systems, 2019.
  29. R. Salha. Kernel Estimation for the Conditional Mode and Quantiles of Time Series. PhD thesis, University of Macedonia, 2006.
  30. M. Sesia and E. J. Candès. A comparison of some conformal quantile regression methods. Stat, 9(1):e261, 2020.
  31. Conformal time-series forecasting. In Advances in Neural Information Processing Systems, 2021.
  32. K. U. Steikert. The weighted Nadaraya-Watson Estimator: Strong consistency results, rates of convergence, and a local bootstrap procedure to select the bandwidth. PhD thesis, University of Zurich, 2014.
  33. S. H. Sun and R. Yu. Copula conformal prediction for multi-step time series prediction. In The Twelfth International Conference on Learning Representations, 2024.
  34. Conformal Prediction Under Covariate Shift. Advances in Neural Information Processing Systems, 32, 2019.
  35. A. B. Tsybakov. Introduction to Nonparametric Estimation. Springer, 2009.
  36. H. G. Tucker. A Graduate Course in Probability. Academic Press, 1967.
  37. V. Vovk. Conditional validity of inductive conformal predictors. In Proceedings of the Asian Conference on Machine Learning, 2012.
  38. Machine-Learning Applications of Algorithmic Randomness. In Proceedings of the Sixteenth International Conference on Machine Learning, 1999.
  39. Algorithmic Learning in a Random World. Springer, 2005.
  40. Kernel Smoothing. CRC press, 1994.
  41. G. S. Watson. Smooth regression analysis. Sankhyā: The Indian Journal of Statistics, Series A, 26:359–372, 1964.
  42. C. Xu and Y. Xie. Conformal Anomaly Detection on Spatio-Temporal Observations with Missing Data. arXiv preprint arXiv:2105.11886, 2021a.
  43. C. Xu and Y. Xie. Conformal prediction interval for dynamic time-series. In Proceedings of the 38th International Conference on Machine Learning, 2021b.
  44. C. Xu and Y. Xie. Conformal prediction set for time-series. arXiv preprint arXiv:2206.07851, 2022.
  45. C. Xu and Y. Xie. Conformal prediction for time series. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(10):11575–11587, 2023a.
  46. C. Xu and Y. Xie. Sequential Predictive Conformal Inference for Time Series. In Proceedings of the 40th International Conference on Machine Learning, 2023b.
  47. Conformal prediction for multi-dimensional time series by ellipsoidal sets. arXiv preprint arXiv:2403.03850, 2024.
  48. K. Yu and M. C. Jones. Local Linear Quantile Regression. Journal of the American Statistical Association, 93(441):228–237, 1998.
  49. Adaptive Conformal Predictions for Time Series. In Proceedings of the 39th International Conference on Machine Learning, 2022.
  50. Solar Radiation Ramping Events Modeling Using Spatio-temporal Point Processes. arXiv preprint arXiv:2101.11179, 2021.
  51. Multi-resolution spatio-temporal prediction with application to wind power generation. arXiv preprint arXiv:2108.13285, 2021.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets