Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unraveling the Smoothness Properties of Diffusion Models: A Gaussian Mixture Perspective (2405.16418v2)

Published 26 May 2024 in cs.LG, cs.AI, and cs.CV

Abstract: Diffusion models have made rapid progress in generating high-quality samples across various domains. However, a theoretical understanding of the Lipschitz continuity and second momentum properties of the diffusion process is still lacking. In this paper, we bridge this gap by providing a detailed examination of these smoothness properties for the case where the target data distribution is a mixture of Gaussians, which serves as a universal approximator for smooth densities such as image data. We prove that if the target distribution is a $k$-mixture of Gaussians, the density of the entire diffusion process will also be a $k$-mixture of Gaussians. We then derive tight upper bounds on the Lipschitz constant and second momentum that are independent of the number of mixture components $k$. Finally, we apply our analysis to various diffusion solvers, both SDE and ODE based, to establish concrete error guarantees in terms of the total variation distance and KL divergence between the target and learned distributions. Our results provide deeper theoretical insights into the dynamics of the diffusion process under common data distributions.

Citations (8)

Summary

We haven't generated a summary for this paper yet.