Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
81 tokens/sec
Gemini 2.5 Pro Premium
47 tokens/sec
GPT-5 Medium
22 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
88 tokens/sec
DeepSeek R1 via Azure Premium
79 tokens/sec
GPT OSS 120B via Groq Premium
459 tokens/sec
Kimi K2 via Groq Premium
192 tokens/sec
2000 character limit reached

Networked Integrated Sensing and Communications for 6G Wireless Systems (2405.16398v1)

Published 26 May 2024 in eess.SP

Abstract: Integrated sensing and communication (ISAC) is envisioned as a key pillar for enabling the upcoming sixth generation (6G) communication systems, requiring not only reliable communication functionalities but also highly accurate environmental sensing capabilities. In this paper, we design a novel networked ISAC framework to explore the collaboration among multiple users for environmental sensing. Specifically, multiple users can serve as powerful sensors, capturing back scattered signals from a target at various angles to facilitate reliable computational imaging. Centralized sensing approaches are extremely sensitive to the capability of the leader node because it requires the leader node to process the signals sent by all the users. To this end, we propose a two-step distributed cooperative sensing algorithm that allows low-dimensional intermediate estimate exchange among neighboring users, thus eliminating the reliance on the centralized leader node and improving the robustness of sensing. This way, multiple users can cooperatively sense a target by exploiting the block-wise environment sparsity and the interference cancellation technique. Furthermore, we analyze the mean square error of the proposed distributed algorithm as a networked sensing performance metric and propose a beamforming design for the proposed network ISAC scheme to maximize the networked sensing accuracy and communication performance subject to a transmit power constraint. Simulation results validate the effectiveness of the proposed algorithm compared with the state-of-the-art algorithms.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (44)
  1. S. Alizadehsalehi, A. Hadavi, and J. C. Huang, “From BIM to extended reality in AEC industry,” Autom. Constr., vol. 116, no. 103254, pp. 1–13, 2020.
  2. E. C. Strinati, S. Barbarossa, J. L. Gonzalez-Jimenez, D. Ktenas, N. Cassiau, L. Maret, and C. Dehos, “6G: The next frontier: From holographic messaging to artificial intelligence using subterahertz and visible light communication,” IEEE Veh. Technol. Mag., vol. 14, no. 3, pp. 42–50, 2019.
  3. D. Shen, G. Wu, and H.-I. Suk, “Deep learning in medical image analysis,” Annu. Rev. Biomed. Eng., vol. 19, pp. 221–248, 2017.
  4. A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet of things for smart cities,” IEEE Internet Things J., vol. 1, no. 1, pp. 22–32, 2014.
  5. J. Toutouh, J. García-Nieto, and E. Alba, “Intelligent OLSR routing protocol optimization for VANETs,” IEEE Trans. Veh. Technol., vol. 61, no. 4, pp. 1884–1894, 2012.
  6. X. Shao and R. Zhang, “Enhancing wireless sensing via a target-mounted intelligent reflecting surface,” Natl. Sci. Rev., vol. 10, no. 8, p. nwad150, 2023.
  7. X. Shao, C. You, W. Ma, X. Chen, and R. Zhang, “Target sensing with intelligent reflecting surface: Architecture and performance,” IEEE J. Sel. Areas Commun., vol. 40, no. 7, pp. 2070–2084, 2022.
  8. X. Shao, C. You, and R. Zhang, “Intelligent reflecting surface aided wireless sensing: Applications and design issues,” IEEE Wirel. Commun. Mag., no. 99, pp. 1–1, 2023.
  9. L. Zhu, J. Zhang, Z. Xiao, X. Cao, D. O. Wu, and X.-G. Xia, “Millimeter-wave NOMA with user grouping, power allocation and hybrid beamforming,” IEEE Trans. Wire. Commun., vol. 18, no. 11, pp. 5065–5079, 2019.
  10. L. Zhu, J. Zhang, Z. Xiao, X. Cao, and D. O. Wu, “Optimal user pairing for downlink non-orthogonal multiple access (NOMA),” IEEE Commun. Let., vol. 8, no. 2, pp. 328–331, 2019.
  11. L. Zhu, Z. Xiao, X.-G. Xia, and D. Oliver Wu, “Millimeter-wave communications with non-orthogonal multiple access for B5G/6G,” IEEE Access, vol. 7, pp. 116 123–116 132, 2019.
  12. Y. Cui, F. Liu, X. Jing, and J. Mu, “Integrating sensing and communications for ubiquitous IoT: Applications, trends, and challenges,” IEEE Netw., vol. 35, no. 5, pp. 158–167, 2021.
  13. W. Yuan, Z. Wei, S. Li, R. Schober, and G. Caire, “Orthogonal time frequency space modulation - Part III: ISAC and potential applications,” IEEE Commun. Let., vol. 99, pp. 1–1, 2022.
  14. R. Li, X. Shao, S. Sun, M. Tao, and R. Zhang, “Beam scanning for integrated sensing and communication in IRS-aided mmwave systems,” in IEEE Workshop Signal Process. Adv. Wireless Commun. SPAWC, 2023, pp. 1–5.
  15. T. Mao, J. Chen, Q. Wang, C. Han, Z. Wang, and G. K. Karagiannidis, “Waveform design for joint sensing and communications in millimeter-wave and low Terahertz bands,” IEEE Trans. Commun., vol. 70, no. 10, pp. 7023–7039, 2022.
  16. D. K. P. Tan, J. He, Y. Li, A. Bayesteh, Y. Chen, P. Zhu, and W. Tong, “Integrated sensing and communication in 6G: Motivations, use cases, requirements, challenges and future directions,” in IEEE Int. Online Symp. Jt. Commun. Sens., JC S, 2021, pp. 1–6.
  17. C. Liu, W. Yuan, S. Li, X. Liu, H. Li, D. W. K. Ng, and Y. Li, “Learning-based predictive beamforming for integrated sensing and communication in vehicular networks,” IEEE J. Sel. Areas Commun., vol. 40, no. 8, pp. 2317–2334, 2022.
  18. Z. Wang, Y. Liu, X. Mu, Z. Ding, and O. A. Dobre, “NOMA empowered integrated sensing and communication,” IEEE Commun. Lett., vol. 26, no. 3, pp. 677–681, 2022.
  19. J. Mu, Y. Gong, F. Zhang, Y. Cui, F. Zheng, and X. Jing, “Integrated sensing and communication-enabled predictive beamforming with deep learning in vehicular networks,” IEEE Commun. Lett., vol. 25, no. 10, pp. 3301–3304, 2021.
  20. T. Zhang, S. Wang, G. Li, F. Liu, G. Zhu, and R. Wang, “Accelerating edge intelligence via integrated sensing and communication,” in IEEE Int. Conf. Commun., 2022, pp. 1586–1592.
  21. T. Guo, X. Li, M. Mei, Z. Yang, J. Shi, K.-K. Wong, and Z. Zhang, “Joint communication and sensing design in coal mine safety monitoring: 3-D phase beamforming for RIS-assisted wireless networks,” IEEE Internet Things J., vol. 10, no. 13, pp. 11 306–11 315, 2023.
  22. X. Liu, H. Zhang, K. Long, M. Zhou, Y. Li, and H. V. Poor, “Proximal policy optimization-based transmit beamforming and phase-shift design in an IRS-aided ISAC system for the THz band,” IEEE J. Sel. Areas Commun., vol. 40, no. 7, pp. 2056–2069, 2022.
  23. Y. Liu, I. Al-Nahhal, O. A. Dobre, F. Wang, and H. Shin, “Extreme learning machine-based channel estimation in IRS-assisted multi-user ISAC system,” IEEE Trans. Commun., vol. 71, no. 12, pp. 6993–7007, 2023.
  24. T. Wild, V. Braun, and H. Viswanathan, “Joint design of communication and sensing for beyond 5G and 6G systems,” IEEE Access, vol. 9, pp. 30 845–30 857, 2021.
  25. F. Liu, C. Masouros, A. P. Petropulu, H. Griffiths, and L. Hanzo, “Joint radar and communication design: Applications, state-of-the-art, and the road ahead,” IEEE Trans. Commun., vol. 68, no. 6, pp. 3834–3862, 2020.
  26. S. Zhu, A. Zhang, Z. Xu, and X. Dong, “Radar coincidence imaging with random microwave source,” IEEE Antennas Wirel. Propag. Lett., vol. 14, pp. 1239–1242, 2015.
  27. X. Tong, Z. Zhang, J. Wang, C. Huang, and M. Debbah, “Joint multi-user communication and sensing exploiting both signal and environment sparsity,” IEEE J. Sel. Top. Signal Process., vol. 15, no. 6, pp. 1409–1422, 2021.
  28. B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science, vol. 340, no. 6134, pp. 844–847, 2013.
  29. J. Yao, Z. Zhang, X. Shao, C. Huang, C. Zhong, and X. Chen, “Concentrative intelligent reflecting surface aided computational imaging via fast block sparse Bayesian learning,” in IEEE Veh. Technol. Conf., 2021, pp. 1–6.
  30. X. Li, F. Liu, Z. Zhou, G. Zhu, S. Wang, K. Huang, and Y. Gong, “Integrated sensing and over-the-air computation: Dual-functional MIMO beamforming design,” in Int. Conf. 6G Netw., 6GNet, 2022, pp. 1–8.
  31. J. A. Zhang, F. Liu, C. Masouros, R. W. Heath, Z. Feng, L. Zheng, and A. Petropulu, “An overview of signal processing techniques for joint communication and radar sensing,” IEEE J. Sel. Top. Signal Process., vol. 15, no. 6, pp. 1295–1315, 2021.
  32. Y. Chen, Y. Gu, and A. O. Hero, “Sparse LMS for system identification,” in IEEE Int. Conf. Acoust. Speech Signal Process., 2009, pp. 3125–3128.
  33. Y. Gu, J. Jin, and S. Mei, “l0subscript𝑙0l_{0}italic_l start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT norm constraint LMS algorithm for sparse system identification,” IEEE Signal Process. Lett., vol. 16, no. 9, pp. 774–777, 2009.
  34. A. Bertrand and M. Moonen, “Low-complexity distributed total least squares estimation in ad hoc sensor networks,” IEEE Trans. Signal Process., vol. 60, no. 8, pp. 4321–4333, 2012.
  35. S. Huang and C. Li, “Distributed sparse total least-squares over networks,” IEEE Trans. Signal Process., vol. 63, no. 11, pp. 2986–2998, 2015.
  36. R. López-Valcarce, S. S. Pereira, and A. Pages-Zamora, “Distributed total least squares estimation over networks,” in IEEE Int. Conf. Acoust. Speech Signal Process., 2014, pp. 7580–7584.
  37. F. S. Cattivelli and A. H. Sayed, “Diffusion LMS strategies for distributed estimation,” IEEE Trans. Signal Process., vol. 58, no. 3, pp. 1035–1048, 2009.
  38. S. A. Alghunaim, E. K. Ryu, K. Yuan, and A. H. Sayed, “Decentralized proximal gradient algorithms with linear convergence rates,” IEEE Trans. Autom. Control, vol. 66, no. 6, pp. 2787–2794, 2021.
  39. R. Arablouei, S. Werner, and K. Doğançay, “Analysis of the gradient-descent total least-squares adaptive filtering algorithm,” IEEE Trans. Signal Process., vol. 62, no. 5, pp. 1256–1264, 2014.
  40. F. Liu, L. Zhou, C. Masouros, A. Li, W. Luo, and A. Petropulu, “Toward dual-functional radar-communication systems: Optimal waveform design,” IEEE Trans. Signal Process., vol. 66, no. 16, pp. 4264–4279, 2018.
  41. A. Ben-Tal and M. Zibulevsky, “Penalty/barrier multiplier methods for convex programming problems,” IEEE Trans. Wire. Commun., vol. 7, no. 2, pp. 347–366, 1997.
  42. Y. Liu, C. Li, and Z. Zhang, “Diffusion sparse least-mean squares over networks,” IEEE Trans. Signal Process., vol. 60, no. 8, pp. 4480–4485, 2012.
  43. X. Shao, X. Chen, D. W. K. Ng, C. Zhong, and Z. Zhang, “Cooperative activity detection: Sourced and unsourced massive random access paradigms,” IEEE Trans. Signal Process., vol. 68, pp. 6578–6593, 2020.
  44. X. Shao and F. Chen, “Complementary performance analysis of general complex-valued diffusion LMS for noncircular signals,” Signal Process., vol. 160, pp. 237–246, 2019.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube