Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalized Volterra-type integral operators between Bloch-type spaces (2405.16228v2)

Published 25 May 2024 in math.FA

Abstract: The Volterra-type integral operator plays an essential role in modern complex analysis and operator theory. Recently, Chalmoukis \cite{Cn} introduced a generalized integral operator, say $I_{g,a}$, defined by $$I_{g,a}f=In(a_0f{(n-1)}g'+a_1f{(n-2)}g''+\cdots+a_{n-1}fg{(n)}),$$ where $g\in H(\mathbb{D})$ and $a=(a_0,a_1,\cdots,a_{n-1})\in \mathbb{C}n$. $In$ is the $n$th iteration of the integral operator $I$. In this paper, we introduce a more generalized integral operators $I_{\mathbf{g}}{(n)}$ that cover $I_{g,a}$ on the Bloch-type space $\mathcal{B}{\alpha}$, defined by $$I_{\mathbf{g}}{(n)}f=In(fg_0+\cdots+f{(n-1)}g_{n-1}).$$ We show the rigidity of the operator $I_{\mathbf{g}}{(n)}$ and further the sum $\sum_{i=1}nI_{g_i}{N_i,k_i}$, where $I_{g_i}{N_i,k_i}f=I{N_i}(f{(k_i)}g_i)$. Specifically, the boundedness and compactness of $\sum_{i=1}nI_{g_i}{N_i,k_i}$ are equal to those of each $I_{g_i}{N_i,k_i}$. Moreover, the boundedness and compactness of $In((fg'){(n-1)})$ are independent of $n$ when $\alpha>1$.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com