Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
101 tokens/sec
Gemini 2.5 Pro Premium
50 tokens/sec
GPT-5 Medium
28 tokens/sec
GPT-5 High Premium
27 tokens/sec
GPT-4o
101 tokens/sec
DeepSeek R1 via Azure Premium
90 tokens/sec
GPT OSS 120B via Groq Premium
515 tokens/sec
Kimi K2 via Groq Premium
220 tokens/sec
2000 character limit reached

Extended Reality (XR) Codec Adaptation in 5G using Multi-Agent Reinforcement Learning with Attention Action Selection (2405.15872v1)

Published 24 May 2024 in cs.NI

Abstract: Extended Reality (XR) services will revolutionize applications over 5th and 6th generation wireless networks by providing seamless virtual and augmented reality experiences. These applications impose significant challenges on network infrastructure, which can be addressed by machine learning algorithms due to their adaptability. This paper presents a Multi- Agent Reinforcement Learning (MARL) solution for optimizing codec parameters of XR traffic, comparing it to the Adjust Packet Size (APS) algorithm. Our cooperative multi-agent system uses an Optimistic Mixture of Q-Values (oQMIX) approach for handling Cloud Gaming (CG), Augmented Reality (AR), and Virtual Reality (VR) traffic. Enhancements include an attention mechanism and slate-Markov Decision Process (MDP) for improved action selection. Simulations show our solution outperforms APS with average gains of 30.1%, 15.6%, 16.5% 50.3% in XR index, jitter, delay, and Packet Loss Ratio (PLR), respectively. APS tends to increase throughput but also packet losses, whereas oQMIX reduces PLR, delay, and jitter while maintaining goodput.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. L. U. Khan, W. Saad, D. Niyato, Z. Han, and C. S. Hong, “Digital-Twin-Enabled 6G: Vision, Architectural Trends, and Future Directions,” IEEE Communications Magazine, 2022.
  2. H. F. Ahmad, W. Rafique, R. U. Rasool, A. Alhumam, Z. Anwar, and J. Qadir, “Leveraging 6G, extended reality, and IoT big data analytics for healthcare: A review,” 2023.
  3. 3GPP, “5G; QoE parameters and metrics relevant to the Virtual Reality (VR) user experience ,” 3rd Generation Partnership Project (3GPP), Technical Report (TR) 26.919, Nov. 2020, version 16.1.0. [Online]. Available: https://www.etsi.org/deliver/etsi_tr/126900_126999/126929/16.01.00_60/tr_126929v160100p.pdf
  4. 3GPP, “5G; Extended Reality (XR) in 5G,” 3rd Generation Partnership Project (3GPP), Technical Report (TR) 26.928, Nov. 2020, version 16.0.0. [Online]. Available: https://www.etsi.org/deliver/etsi_tr/126900_126999/126928/16.00.00_60/tr_126928v160000p.pdf
  5. B. Bojovic, S. Lagen, K. Koutlia, X. Zhang, P. Wang, and L. Yu, “Enhancing 5G QoS Management for XR Traffic Through XR Loopback Mechanism,” IEEE Journal on Selected Areas in Communications, 2023.
  6. 3GPP, “Study on XR (Extended Reality) Evaluations for NR,” 3rd Generation Partnership Project (3GPP), Technical Report (TR) 38.838, Dec. 2021, version 17.0.0. [Online]. Available: https://www.3gpp.org/ftp/Specs/archive/38_series/38.838/38838-h00.zip
  7. S. Lagen, B. Bojovic, K. Koutlia, X. Zhang, P. Wang, and Q. Qu, “QoS Management for XR Traffic in 5G NR: A Multi-Layer System View & End-to-End Evaluation,” IEEE Communications Magazine, 2023.
  8. S. Sengupta, N. Ganguly, S. Chakraborty, and P. De, “HotDASH: Hotspot Aware Adaptive Video Streaming Using Deep Reinforcement Learning,” in Proceedings - International Conference on Network Protocols, ICNP, 2018.
  9. K. Tang, N. Kan, J. Zou, C. Li, X. Fu, M. Hong, and H. Xiong, “Multi-User Adaptive Video Delivery over Wireless Networks: A Physical Layer Resource-Aware Deep Reinforcement Learning Approach,” IEEE Transactions on Circuits and Systems for Video Technology, 2021.
  10. B. O. Turkkan, T. Dai, A. Raman, T. Kosar, C. Chen, M. F. Bulut, J. Zola, and D. Sow, “Greenabr: Energy-aware adaptive bitrate streaming with deep reinforcement learning,” in Proceedings of the 13th ACM Multimedia Systems Conference, ser. MMSys ’22.   New York, NY, USA: Association for Computing Machinery, 2022, p. 150–163. [Online]. Available: https://doi.org/10.1145/3524273.3528188
  11. K. Brunnström, S. A. Beker, K. De, A. Dooms, S. Egger, M.-N. Garcia, T. Hossfeld, S. Jumisko-Pyykkö, C. Keimel, and M.-C. Larabi, “Qualinet White Paper on Definitions of Quality of Experience Qualinet White Paper on Definitions of Quality of Experience Output from the fifth Qualinet meeting, Novi Sad,” European Network on Quality of Experience in in Multimedia Systems and Services (COST Action IC 1003), 2013.
  12. S. Dou, S. Liao, J. Wu, K. Wu, E. Chen, W. Chen, H. Shen, and N. Li, “XR Quality Index: Evaluating RAN Transmission Quality for XR services over 5G and beyond,” in IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC, 2021.
  13. T. Rashid, M. Samvelyan, C. S. De Witt, G. Farquhar, J. Foerster, and S. Whiteson, “QMIX: Monotonic value function factorisation for deep multi-agent reinforcement Learning,” in 35th International Conference on Machine Learning, ICML 2018, 2018.
  14. P. E. Iturria-Rivera, M. Chenier, B. Herscovici, B. Kantarci, and M. Erol-Kantarci, “Channel Selection for Wi-Fi 7 Multi-Link Operation via Optimistic-Weighted VDN and Parallel Transfer Reinforcement Learning,” in 2023 IEEE 34th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 2023, pp. 1–6.
  15. T. Rashid, G. Farquhar, B. Peng, and S. Whiteson, “Weighted QMIX: Expanding Monotonic Value Function Factorisation,” in 34th Conference on Neural Information Processing Systems (NeurIPS 2020), 2020.
  16. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in Neural Information Processing Systems, 2017.
  17. P. Sunehag, R. Evans, G. Dulac-Arnold, Y. Zwols, D. Visentin, and B. Coppin, “Deep reinforcement learning with attention for slate markov decision processes with high-dimensional states and actions.” CoRR, vol. abs/1512.01124, 2015. [Online]. Available: http://dblp.uni-trier.de/db/journals/corr/corr1512.html#SunehagEDZVC15
  18. P. Gawłowicz and A. Zubow, “ns-3 meets OpenAI Gym: The Playground for Machine Learning in Networking Research,” in ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM), November 2019. [Online]. Available: http://www.tkn.tu-berlin.de/fileadmin/fg112/Papers/2019/gawlowicz19_mswim.pdf
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com