Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
88 tokens/sec
Gemini 2.5 Pro Premium
46 tokens/sec
GPT-5 Medium
16 tokens/sec
GPT-5 High Premium
19 tokens/sec
GPT-4o
95 tokens/sec
DeepSeek R1 via Azure Premium
90 tokens/sec
GPT OSS 120B via Groq Premium
476 tokens/sec
Kimi K2 via Groq Premium
234 tokens/sec
2000 character limit reached

Model-free reinforcement learning with noisy actions for automated experimental control in optics (2405.15421v2)

Published 24 May 2024 in cs.LG and physics.optics

Abstract: Setting up and controlling optical systems is often a challenging and tedious task. The high number of degrees of freedom to control mirrors, lenses, or phases of light makes automatic control challenging, especially when the complexity of the system cannot be adequately modeled due to noise or non-linearities. Here, we show that reinforcement learning (RL) can overcome these challenges when coupling laser light into an optical fiber, using a model-free RL approach that trains directly on the experiment without pre-training. By utilizing the sample-efficient algorithms Soft Actor-Critic (SAC) or Truncated Quantile Critics (TQC), our agent learns to couple with 90% efficiency, comparable to the human expert. We demonstrate that direct training on an experiment can replace extensive system modeling. Our result exemplifies RL's potential to tackle problems in optics, paving the way for more complex applications where full noise modeling is not feasible.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com