Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
81 tokens/sec
Gemini 2.5 Pro Premium
47 tokens/sec
GPT-5 Medium
22 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
88 tokens/sec
DeepSeek R1 via Azure Premium
79 tokens/sec
GPT OSS 120B via Groq Premium
459 tokens/sec
Kimi K2 via Groq Premium
192 tokens/sec
2000 character limit reached

A Trajectory-Based Bayesian Approach to Multi-Objective Hyperparameter Optimization with Epoch-Aware Trade-Offs (2405.15303v2)

Published 24 May 2024 in cs.LG

Abstract: Training machine learning models inherently involves a resource-intensive and noisy iterative learning procedure that allows epoch-wise monitoring of the model performance. However, the insights gained from the iterative learning procedure typically remain underutilized in multi-objective hyperparameter optimization scenarios. Despite the limited research in this area, existing methods commonly identify the trade-offs only at the end of model training, overlooking the fact that trade-offs can emerge at earlier epochs in cases such as overfitting. To bridge this gap, we propose an enhanced multi-objective hyperparameter optimization problem that treats the number of training epochs as a decision variable, rather than merely an auxiliary parameter, to account for trade-offs at an earlier training stage. To solve this problem and accommodate its iterative learning, we then present a trajectory-based multi-objective Bayesian optimization algorithm characterized by two features: 1) a novel acquisition function that captures the improvement along the predictive trajectory of model performances over epochs for any hyperparameter setting and 2) a multi-objective early stopping mechanism that determines when to terminate the training to maximize epoch efficiency. Experiments on synthetic simulations and hyperparameter tuning benchmarks demonstrate that our algorithm can effectively identify the desirable trade-offs while improving tuning efficiency.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube