Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semi-Supervised Learning guided by the Generalized Bayes Rule under Soft Revision (2405.15294v2)

Published 24 May 2024 in stat.ML, cs.AI, cs.LG, math.ST, stat.ME, and stat.TH

Abstract: We provide a theoretical and computational investigation of the Gamma-Maximin method with soft revision, which was recently proposed as a robust criterion for pseudo-label selection (PLS) in semi-supervised learning. Opposed to traditional methods for PLS we use credal sets of priors ("generalized Bayes") to represent the epistemic modeling uncertainty. These latter are then updated by the Gamma-Maximin method with soft revision. We eventually select pseudo-labeled data that are most likely in light of the least favorable distribution from the so updated credal set. We formalize the task of finding optimal pseudo-labeled data w.r.t. the Gamma-Maximin method with soft revision as an optimization problem. A concrete implementation for the class of logistic models then allows us to compare the predictive power of the method with competing approaches. It is observed that the Gamma-Maximin method with soft revision can achieve very promising results, especially when the proportion of labeled data is low.

Citations (3)

Summary

We haven't generated a summary for this paper yet.