Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extrinsic Holographic Renormalization for a Scalar Field (2405.15186v3)

Published 24 May 2024 in hep-th

Abstract: In the context of the holographic correspondence, we introduce a purely extrinsic renormalization prescription, exemplified with the case of a minimally-coupled scalar field in AdS space. The counterterms depend only on the field and its radial derivatives. This would seem to conflict with the Dirichlet variational principle, but we show that consistency follows from the fact that the asymptotic structure of asymptotically locally AdS spacetimes requires not only the leading, but also all of the subleading non-normalizable modes to be fixed as a boundary condition. Crucially, as seen from a path integral definition of the bulk partition function involved in the standard GKPW formula, this condition is valid away from the saddle. We find that the extrinsic renormalization prescription is maximally efficient when the scalar field is massless, which is suggestive of a connection with the Kounterterm method for renormalization of pure gravity.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (54)
  1. J. M. Maldacena, “The Large N limit of superconformal field theories and supergravity,” Adv. Theor. Math. Phys. 2 (1998) 231–252, hep-th/9711200.
  2. S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, “Gauge theory correlators from noncritical string theory,” Phys. Lett. B 428 (1998) 105–114, hep-th/9802109.
  3. E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2 (1998) 253–291, hep-th/9802150.
  4. P. Breitenlohner and D. Z. Freedman, “Positive Energy in anti-De Sitter Backgrounds and Gauged Extended Supergravity,” Phys. Lett. B 115 (1982) 197–201.
  5. P. Breitenlohner and D. Z. Freedman, “Stability in Gauged Extended Supergravity,” Annals Phys. 144 (1982) 249.
  6. I. R. Klebanov and E. Witten, “AdS / CFT correspondence and symmetry breaking,” Nucl. Phys. B 556 (1999) 89–114, hep-th/9905104.
  7. P. Minces and V. O. Rivelles, “Scalar field theory in the AdS / CFT correspondence revisited,” Nucl. Phys. B 572 (2000) 651–669, hep-th/9907079.
  8. M. Berkooz, A. Sever, and A. Shomer, “’Double trace’ deformations, boundary conditions and space-time singularities,” JHEP 05 (2002) 034, hep-th/0112264.
  9. A. Sever and A. Shomer, “A Note on multitrace deformations and AdS/CFT,” JHEP 07 (2002) 027, hep-th/0203168.
  10. L. Susskind and E. Witten, “The Holographic bound in anti-de Sitter space,” hep-th/9805114.
  11. A. W. Peet and J. Polchinski, “UV / IR relations in AdS dynamics,” Phys. Rev. D 59 (1999) 065011, hep-th/9809022.
  12. K. Skenderis and S. N. Solodukhin, “Quantum effective action from the AdS / CFT correspondence,” Phys. Lett. B 472 (2000) 316–322, hep-th/9910023.
  13. S. de Haro, S. N. Solodukhin, and K. Skenderis, “Holographic reconstruction of space-time and renormalization in the AdS / CFT correspondence,” Commun. Math. Phys. 217 (2001) 595–622, hep-th/0002230.
  14. K. Skenderis, “Lecture notes on holographic renormalization,” Class. Quant. Grav. 19 (2002) 5849–5876, hep-th/0209067.
  15. C. Fefferman and C. R. Graham, “Conformal invariants,” in The Mathematical Heritage of Élie Cartan (Lyon, 1984), pp. 95–116. Astérisque, 1985.
  16. I. Papadimitriou, “Holographic renormalization as a canonical transformation,” JHEP 11 (2010) 014, 1007.4592.
  17. C. Imbimbo, A. Schwimmer, S. Theisen, and S. Yankielowicz, “Diffeomorphisms and holographic anomalies,” Class. Quant. Grav. 17 (2000) 1129–1138, hep-th/9910267.
  18. I. Papadimitriou, “Holographic renormalization made simple: An example,” Subnucl. Ser. 41 (2005) 508–514.
  19. I. Papadimitriou and K. Skenderis, “AdS / CFT correspondence and geometry,” IRMA Lect. Math. Theor. Phys. 8 (2005) 73–101, hep-th/0404176.
  20. P. Kraus, F. Larsen, and R. Siebelink, “The gravitational action in asymptotically AdS and flat space-times,” Nucl. Phys. B 563 (1999) 259–278, hep-th/9906127.
  21. R. Olea, “Mass, angular momentum and thermodynamics in four-dimensional Kerr-AdS black holes,” JHEP 06 (2005) 023, hep-th/0504233.
  22. R. Olea, “Regularization of odd-dimensional AdS gravity: Kounterterms,” JHEP 04 (2007) 073, hep-th/0610230.
  23. G. Kofinas and R. Olea, “Universal regularization prescription for Lovelock AdS gravity,” JHEP 11 (2007) 069, 0708.0782.
  24. G. Giribet, O. Miskovic, R. Olea, and D. Rivera-Betancour, “Energy in Higher-Derivative Gravity via Topological Regularization,” Phys. Rev. D 98 (2018), no. 4, 044046, 1806.11075.
  25. G. Anastasiou, O. Miskovic, R. Olea, and I. Papadimitriou, “Counterterms, Kounterterms, and the variational problem in AdS gravity,” JHEP 08 (2020) 061, 2003.06425.
  26. G. Anastasiou, I. J. Araya, C. Corral, and R. Olea, “Noether-Wald charges in six-dimensional Critical Gravity,” JHEP 07 (2021) 156, 2105.02924.
  27. G. Anastasiou, I. J. Araya, C. Corral, and R. Olea, “Conformal Renormalization of topological black holes in AdS6,” JHEP 11 (2023) 036, 2308.09140.
  28. O. Miskovic and R. Olea, “Thermodynamics of Einstein-Born-Infeld black holes with negative cosmological constant,” Phys. Rev. D 77 (2008) 124048, 0802.2081.
  29. O. Miskovic and R. Olea, “Conserved charges for black holes in Einstein-Gauss-Bonnet gravity coupled to nonlinear electrodynamics in AdS space,” Phys. Rev. D 83 (2011) 024011, 1009.5763.
  30. G. Anastasiou, I. J. Araya, A. Güijosa, and R. Olea, “Renormalized AdS gravity and holographic entanglement entropy of even-dimensional CFTs,” JHEP 10 (2019) 221, 1908.11447.
  31. V. Balasubramanian, P. Kraus, and A. E. Lawrence, “Bulk versus boundary dynamics in anti-de Sitter space-time,” Phys. Rev. D 59 (1999) 046003, hep-th/9805171.
  32. K. Skenderis and B. C. van Rees, “Real-time gauge/gravity duality,” Phys. Rev. Lett. 101 (2008) 081601, 0805.0150.
  33. K. Skenderis and B. C. van Rees, “Real-time gauge/gravity duality: Prescription, Renormalization and Examples,” JHEP 05 (2009) 085, 0812.2909.
  34. D. Marolf and S. F. Ross, “Boundary Conditions and New Dualities: Vector Fields in AdS/CFT,” JHEP 11 (2006) 085, hep-th/0606113.
  35. G. Compere and D. Marolf, “Setting the boundary free in AdS/CFT,” Class. Quant. Grav. 25 (2008) 195014, 0805.1902.
  36. L. Brink and M. Henneaux, Principles of String Theory. Plenum Press, New York, 1988.
  37. R. Aros, M. Contreras, R. Olea, R. Troncoso, and J. Zanelli, “Conserved charges for even dimensional asymptotically AdS gravity theories,” Phys. Rev. D 62 (2000) 044002, hep-th/9912045.
  38. P. Mora, R. Olea, R. Troncoso, and J. Zanelli, “Vacuum energy in odd-dimensional AdS gravity,” hep-th/0412046.
  39. O. Miskovic and R. Olea, “On boundary conditions in three-dimensional AdS gravity,” Phys. Lett. B 640 (2006) 101–107, hep-th/0603092.
  40. M. Henningson and K. Skenderis, “The Holographic Weyl anomaly,” JHEP 07 (1998) 023, hep-th/9806087.
  41. M. Henningson and K. Skenderis, “Holography and the Weyl anomaly,” Fortsch. Phys. 48 (2000) 125–128, hep-th/9812032.
  42. B. C. van Rees, “Holographic renormalization for irrelevant operators and multi-trace counterterms,” JHEP 08 (2011) 093, 1102.2239.
  43. A. Petkou and K. Skenderis, “A Nonrenormalization theorem for conformal anomalies,” Nucl. Phys. B 561 (1999) 100–116, hep-th/9906030.
  44. I. Papadimitriou and K. Skenderis, “Thermodynamics of asymptotically locally AdS spacetimes,” JHEP 08 (2005) 004, hep-th/0505190.
  45. I. Papadimitriou, “Multi-Trace Deformations in AdS/CFT: Exploring the Vacuum Structure of the Deformed CFT,” JHEP 05 (2007) 075, hep-th/0703152.
  46. I. Papadimitriou, “Lectures on Holographic Renormalization,” Springer Proc. Phys. 176 (2016) 131–181.
  47. V. Balasubramanian and P. Kraus, “A Stress tensor for Anti-de Sitter gravity,” Commun. Math. Phys. 208 (1999) 413–428, hep-th/9902121.
  48. R. Penrose and W. Rindler, Spinors and Space-Time. Cambridge Monographs on Mathematical Physics. Cambridge Univ. Press, Cambridge, UK, 4, 2011.
  49. J. D. Brown and M. Henneaux, “Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity,” Commun. Math. Phys. 104 (1986) 207–226.
  50. J. Kalkkinen, D. Martelli, and W. Mueck, “Holographic renormalization and anomalies,” JHEP 04 (2001) 036, hep-th/0103111.
  51. M. Bianchi, D. Z. Freedman, and K. Skenderis, “How to go with an RG flow,” JHEP 08 (2001) 041, hep-th/0105276.
  52. M. Bianchi, D. Z. Freedman, and K. Skenderis, “Holographic renormalization,” Nucl. Phys. B 631 (2002) 159–194, hep-th/0112119.
  53. M. Berg and H. Samtleben, “An Exact holographic RG flow between 2-d conformal fixed points,” JHEP 05 (2002) 006, hep-th/0112154.
  54. M. Berg and H. Samtleben, “Holographic correlators in a flow to a fixed point,” JHEP 12 (2002) 070, hep-th/0209191.

Summary

We haven't generated a summary for this paper yet.