Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
118 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
24 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Parameterization and optimizability of pulse-level VQEs (2405.15166v2)

Published 24 May 2024 in quant-ph

Abstract: In conventional variational quantum eigensolvers (VQEs), trial states are prepared by applying series of parameterized gates to a reference state, with the gate parameters being varied to minimize the energy of the target system. Recognizing that the gates are intermediates which are ultimately compiled into a set of control pulses to be applied to each qubit in the lab, the recently proposed ctrl-VQE algorithm takes the amplitudes, frequencies, and phases of the pulse as the variational parameters used to minimize the molecular energy. In this work, we explore how all three degrees of freedom interrelate with one another. To this end, we consider several distinct strategies to parameterize the control pulses, assessing each one through numerical simulations of a transmon-like device. For each parameterization, we contrast the pulse duration required to prepare a good ansatz, and the difficulty to optimize that ansatz from a well-defined initial state. We deduce several guiding heuristics to implement practical ctrl-VQE in hardware, which we anticipate will generalize for generic device architectures.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (12)
  1. S. Deffner and S. Campbell, Quantum speed limits: from heisenberg’s uncertainty principle to optimal quantum control, Journal of Physics A: Mathematical and Theoretical 50, 453001 (2017).
  2. D. Liberzon, Calculus of variations and optimal control theory (Princeton university press, 2011).
  3. D. Meirom and S. H. Frankel, PANSATZ: pulse-based ansatz for variational quantum algorithms, Frontiers in Quantum Science and Technology 2, 10.3389/frqst.2023.1273581 (2023), publisher: Frontiers.
  4. K. Kottmann and N. Killoran, Evaluating analytic gradients of pulse programs on quantum computers (2023), arXiv:2309.16756 [quant-ph].
  5. R. d. Keijzer, O. Tse, and S. Kokkelmans, Pulse based Variational Quantum Optimal Control for hybrid quantum computing, Quantum 7, 908 (2023), publisher: Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften.
  6. Qiskit contributors, Qiskit: An open-source framework for quantum computing (2023).
  7. K. M. Sherbert and N. J. Mayhall, Ctrlvqe.jl, https://github.com/mayhallgroup/CtrlVQE.jl (2023).
  8. T. E. Roth, R. Ma, and W. C. Chew, The transmon qubit for electromagnetics engineers: An introduction, IEEE Antennas and Propagation Magazine 65, 8–20 (2023), conference Name: IEEE Antennas and Propagation Magazine.
  9. P. K. Mogensen and A. N. Riseth, Optim: A mathematical optimization package for Julia, Journal of Open Source Software 3, 615 (2018).
  10. T. Haug, K. Bharti, and M. Kim, Capacity and Quantum Geometry of Parametrized Quantum Circuits, PRX Quantum 2, 040309 (2021), publisher: American Physical Society.
  11. J. Townsend, A Modern Approach to Quantum Mechanics, International series in pure and applied physics (University Science Books, 2000).
  12. J. Baker, A. Kessi, and B. Delley, The generation and use of delocalized internal coordinates in geometry optimization, The Journal of Chemical Physics 105, 192 (1996), https://pubs.aip.org/aip/jcp/article-pdf/105/1/192/19076673/192_1_online.pdf .
Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com