Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamically corrected gates in silicon singlet-triplet spin qubits (2405.15148v3)

Published 24 May 2024 in quant-ph

Abstract: Fault-tolerant quantum computation requires low physical-qubit gate errors. Many approaches exist to reduce gate errors, including both hardware- and control-optimization strategies. Dynamically corrected gates are designed to cancel specific errors and offer the potential for high-fidelity gates, but they have yet to be implemented in singlet-triplet spin qubits in semiconductor quantum dots, due in part to the stringent control constraints in these systems. In this work, we experimentally implement dynamically corrected gates designed to mitigate hyperfine noise in a singlet-triplet qubit realized in a Si/SiGe double quantum dot. The corrected gates reduce infidelities by about a factor of three, resulting in gate fidelities above 0.99 for both identity and Hadamard gates. The gate performances depend sensitively on pulse distortions, and their specific performance reveals an unexpected distortion in our experimental setup.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (12)
  1. P. W. Shor, Algorithms for quantum computation: Discrete logarithms and factoring, Proceedings - Annual IEEE Symposium on Foundations of Computer Science, FOCS , 124 (1994).
  2. A. Ekert and R. Jozsa, Quantum computation and Shor’s factoring algorithm, Reviews of Modern Physics 68, 733 (1996).
  3. A. G. Fowler, A. M. Stephens, and P. Groszkowski, High-threshold universal quantum computation on the surface code, Phys. Rev. A 80, 052312 (2009).
  4. R. Raussendorf and J. Harrington, Fault-tolerant quantum computation with high threshold in two dimensions, Phys. Rev. Lett. 98, 190504 (2007).
  5. K. Khodjasteh and L. Viola, Dynamical quantum error correction of unitary operations with bounded controls, Physical Review A 80, 032314 (2009a).
  6. E. Barnes, X. Wang, and S. Das Sarma, Robust quantum control using smooth pulses and topological winding, Scientific Reports 5, 3 (2015), arXiv:1409.7063 .
  7. K. Khodjasteh and L. Viola, Dynamically error-corrected gates for universal quantum computation, Phys. Rev. Lett. 102, 080501 (2009b).
  8. K. Khodjasteh, D. A. Lidar, and L. Viola, Arbitrarily accurate dynamical control in open quantum systems, Phys. Rev. Lett. 104, 090501 (2010).
  9. C.-H. Huang and H.-S. Goan, Robust quantum gates for stochastic time-varying noise, Phys. Rev. A 95, 062325 (2017).
  10. E. J. Connors, J. Nelson, and J. M. Nichol, Rapid high-fidelity spin-state readout in si/si-ge quantum dots via rf reflectometry, Physical Review Applied 13, 024019 (2020).
  11. J. A. Smolin, J. M. Gambetta, and G. Smith, Efficient method for computing the maximum-likelihood quantum state from measurements with additive gaussian noise, Phys. Rev. Lett. 108, 070502 (2012).
  12. K. R. Brown, A. W. Harrow, and I. L. Chuang, Arbitrarily accurate composite pulse sequences, Phys. Rev. A 70, 052318 (2004).
Citations (2)

Summary

We haven't generated a summary for this paper yet.