Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 472 tok/s Pro
Kimi K2 196 tok/s Pro
2000 character limit reached

Refined conjectures on Fitting ideals of Selmer groups over $\mathbf{Z}_p^2$-extensions (2405.15076v1)

Published 23 May 2024 in math.NT

Abstract: Let $p>3$ be a prime number and $K$ be an imaginary quadratic field where $p$ splits. Let $K_\infty$ be the $\mathbf{Z}p2$-extension of $K$ and let $K_n$ be a finite subextension of $K\infty/K$. Let $E$ be an elliptic curve with good ordinary reduction at $p$. Under some hypotheses, we show that the Mazur-Tate element attached to $E$ over $K_n$ by S. Haran generates the Fitting ideal of the dual Selmer group of $E$ over $K_n$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. Congruences for critical values of higher derivatives of twisted hasse–weil l-functions. Journal für die reine und angewandte Mathematik (Crelles Journal) 2017, 722 (2017), 105–135.
  2. On derivatives of kato’s euler system and the mazur-tate conjecture, 2021.
  3. Iwasawa theory for GL2×ResK/ℚ⁢GL1subscriptGL2subscriptRes𝐾ℚsubscriptGL1{\rm GL}_{2}\times{\rm Res}_{K/\mathbb{Q}}\rm GL_{1}roman_GL start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT × roman_Res start_POSTSUBSCRIPT italic_K / blackboard_Q end_POSTSUBSCRIPT roman_GL start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT. Ann. Math. Qué. 46, 2 (2022), 347–418.
  4. Anticyclotomic p𝑝pitalic_p-ordinary Iwasawa theory of elliptic modular forms. Forum Math. 30, 4 (2018), 887–913.
  5. ℒℒ\mathscr{L}script_L-Invariants, p-Adic Heights, and Factorization of p-Adic L-Functions. International Mathematics Research Notices (11 2021). rnab322.
  6. The Iwasawa main conjectures for GL2subscriptGL2\rm GL_{2}roman_GL start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and derivatives of p𝑝pitalic_p-adic L𝐿Litalic_L-functions. Adv. Math. 400 (2022), Paper No. 108266, 45.
  7. Explicit reciprocity laws and iwasawa theory for modular forms, 2022.
  8. Greenberg, R. Iwasawa theory for p𝑝pitalic_p-adic representations. In Algebraic number theory, vol. 17 of Adv. Stud. Pure Math. Academic Press, Boston, MA, 1989, pp. 97–137.
  9. Greenberg, R. Galois theory for the Selmer group of an abelian variety. Compositio Math. 136, 3 (2003), 255–297.
  10. Haran, S. p𝑝pitalic_p-adic L𝐿Litalic_L-functions for modular forms. Compositio Math. 62, 1 (1987), 31–46.
  11. Johnson, K. Group Matrices, Group Determinants and Representation Theory: The Mathematical Legacy of Frobenius. Lecture Notes in Mathematics. Springer International Publishing, 2019.
  12. Kim, C.-H. An anticyclotomic mazur-tate conjecture for modular forms, 2018.
  13. Kim, C.-H. On the anticyclotomic mazur-tate conjecture for elliptic curves with supersingular reduction, 2024.
  14. On the refined conjectures on Fitting ideals of Selmer groups of elliptic curves with supersingular reduction. Int. Math. Res. Not. IMRN, 14 (2021), 10559–10599.
  15. Kurihara, M. On the Tate Shafarevich groups over cyclotomic fields of an elliptic curve with supersingular reduction. I. Invent. Math. 149, 1 (2002), 195–224.
  16. Loeffler, D. p𝑝pitalic_p-adic integration on ray class groups and non-ordinary p𝑝pitalic_p-adic L𝐿Litalic_L-functions. In Iwasawa theory 2012, vol. 7 of Contrib. Math. Comput. Sci. Springer, Heidelberg, 2014, pp. 357–378.
  17. Refined conjectures of the “Birch and Swinnerton-Dyer type”. Duke Math. J. 54, 2 (1987), 711–750.
  18. Class fields of abelian extensions of 𝐐𝐐{\bf Q}bold_Q. Invent. Math. 76, 2 (1984), 179–330.
  19. Nekovář, J. Selmer complexes. Astérisque, 310 (2006), viii+559.
  20. Ota, K. Kato’s Euler system and the Mazur-Tate refined conjecture of BSD type. Amer. J. Math. 140, 2 (2018), 495–542.
  21. Ota, K. On the rank-part of the Mazur-Tate refined conjecture for higher weight modular forms. Ann. Inst. Fourier (Grenoble) 73, 3 (2023), 1319–1364.
  22. The Iwasawa main conjectures for GL2subscriptGL2\rm GL_{2}roman_GL start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT. Invent. Math. 195, 1 (2014), 1–277.
  23. Washington, L. Introduction to Cyclotomic Fields. Graduate Texts in Mathematics. Springer New York, 1997.
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com