2000 character limit reached
Refined conjectures on Fitting ideals of Selmer groups over $\mathbf{Z}_p^2$-extensions (2405.15076v1)
Published 23 May 2024 in math.NT
Abstract: Let $p>3$ be a prime number and $K$ be an imaginary quadratic field where $p$ splits. Let $K_\infty$ be the $\mathbf{Z}p2$-extension of $K$ and let $K_n$ be a finite subextension of $K\infty/K$. Let $E$ be an elliptic curve with good ordinary reduction at $p$. Under some hypotheses, we show that the Mazur-Tate element attached to $E$ over $K_n$ by S. Haran generates the Fitting ideal of the dual Selmer group of $E$ over $K_n$.
- Congruences for critical values of higher derivatives of twisted hasse–weil l-functions. Journal für die reine und angewandte Mathematik (Crelles Journal) 2017, 722 (2017), 105–135.
- On derivatives of kato’s euler system and the mazur-tate conjecture, 2021.
- Iwasawa theory for GL2×ResK/ℚGL1subscriptGL2subscriptRes𝐾ℚsubscriptGL1{\rm GL}_{2}\times{\rm Res}_{K/\mathbb{Q}}\rm GL_{1}roman_GL start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT × roman_Res start_POSTSUBSCRIPT italic_K / blackboard_Q end_POSTSUBSCRIPT roman_GL start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT. Ann. Math. Qué. 46, 2 (2022), 347–418.
- Anticyclotomic p𝑝pitalic_p-ordinary Iwasawa theory of elliptic modular forms. Forum Math. 30, 4 (2018), 887–913.
- ℒℒ\mathscr{L}script_L-Invariants, p-Adic Heights, and Factorization of p-Adic L-Functions. International Mathematics Research Notices (11 2021). rnab322.
- The Iwasawa main conjectures for GL2subscriptGL2\rm GL_{2}roman_GL start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and derivatives of p𝑝pitalic_p-adic L𝐿Litalic_L-functions. Adv. Math. 400 (2022), Paper No. 108266, 45.
- Explicit reciprocity laws and iwasawa theory for modular forms, 2022.
- Greenberg, R. Iwasawa theory for p𝑝pitalic_p-adic representations. In Algebraic number theory, vol. 17 of Adv. Stud. Pure Math. Academic Press, Boston, MA, 1989, pp. 97–137.
- Greenberg, R. Galois theory for the Selmer group of an abelian variety. Compositio Math. 136, 3 (2003), 255–297.
- Haran, S. p𝑝pitalic_p-adic L𝐿Litalic_L-functions for modular forms. Compositio Math. 62, 1 (1987), 31–46.
- Johnson, K. Group Matrices, Group Determinants and Representation Theory: The Mathematical Legacy of Frobenius. Lecture Notes in Mathematics. Springer International Publishing, 2019.
- Kim, C.-H. An anticyclotomic mazur-tate conjecture for modular forms, 2018.
- Kim, C.-H. On the anticyclotomic mazur-tate conjecture for elliptic curves with supersingular reduction, 2024.
- On the refined conjectures on Fitting ideals of Selmer groups of elliptic curves with supersingular reduction. Int. Math. Res. Not. IMRN, 14 (2021), 10559–10599.
- Kurihara, M. On the Tate Shafarevich groups over cyclotomic fields of an elliptic curve with supersingular reduction. I. Invent. Math. 149, 1 (2002), 195–224.
- Loeffler, D. p𝑝pitalic_p-adic integration on ray class groups and non-ordinary p𝑝pitalic_p-adic L𝐿Litalic_L-functions. In Iwasawa theory 2012, vol. 7 of Contrib. Math. Comput. Sci. Springer, Heidelberg, 2014, pp. 357–378.
- Refined conjectures of the “Birch and Swinnerton-Dyer type”. Duke Math. J. 54, 2 (1987), 711–750.
- Class fields of abelian extensions of 𝐐𝐐{\bf Q}bold_Q. Invent. Math. 76, 2 (1984), 179–330.
- Nekovář, J. Selmer complexes. Astérisque, 310 (2006), viii+559.
- Ota, K. Kato’s Euler system and the Mazur-Tate refined conjecture of BSD type. Amer. J. Math. 140, 2 (2018), 495–542.
- Ota, K. On the rank-part of the Mazur-Tate refined conjecture for higher weight modular forms. Ann. Inst. Fourier (Grenoble) 73, 3 (2023), 1319–1364.
- The Iwasawa main conjectures for GL2subscriptGL2\rm GL_{2}roman_GL start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT. Invent. Math. 195, 1 (2014), 1–277.
- Washington, L. Introduction to Cyclotomic Fields. Graduate Texts in Mathematics. Springer New York, 1997.
Collections
Sign up for free to add this paper to one or more collections.