Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Local and nonlocal stochastic control of quantum chaos: Measurement- and control-induced criticality (2405.14936v2)

Published 23 May 2024 in quant-ph, cond-mat.dis-nn, and nlin.CD

Abstract: We theoretically study the topology of the phase diagram of a family of quantum models inspired by the classical Bernoulli map under stochastic control. The quantum models inherit a control-induced phase transition from the classical model and also manifest an entanglement phase transition intrinsic to the quantum setting. This measurement-induced phase transition has been shown in various settings to either coincide or split off from the control transition, but a systematic understanding of the necessary and sufficient conditions for the two transitions to coincide in this case has so far been lacking. In this work, we generalize the control map to allow for either local or global control action. While this does not affect the classical aspects of the control transition that is described by a random walk, it significantly influences the quantum dynamics, leading to the universality class of the measurement-induced transition being dependent on the locality of the control operation. In the presence of a global control map, the two transitions coincide and the control-induced phase transition dominates the measurement-induced phase transition. Contrarily, the two transitions split in the presence of the local control map or additional projective measurements and generically take on distinct universality classes. For local control, the measurement-induced phase transition recovers the Haar logarithmic conformal field theory universality class found in feedback-free models. However, for global control, a novel universality class with correlation length exponent $\nu \approx 0.7$ emerges from the interplay of control and projective measurements. This work provides a more refined understanding of the relationship between the control- and measurement-induced phase transitions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. B. Skinner, J. Ruhman, and A. Nahum, Measurement-Induced Phase Transitions in the Dynamics of Entanglement, Phys. Rev. X 9, 031009 (2019).
  2. Y. Li, X. Chen, and M. P. A. Fisher, Quantum Zeno effect and the many-body entanglement transition, Phys. Rev. B 98, 205136 (2018).
  3. Y. Li, X. Chen, and M. P. A. Fisher, Measurement-driven entanglement transition in hybrid quantum circuits, Phys. Rev. B 100, 134306 (2019).
  4. A. C. Potter and R. Vasseur, Entanglement Dynamics in Hybrid Quantum Circuits, in Entanglement in Spin Chains: From Theory to Quantum Technology Applications, edited by A. Bayat, S. Bose, and H. Johannesson (Springer International Publishing, Cham, 2022) pp. 211–249.
  5. Measurement-induced entanglement and teleportation on a noisy quantum processor, Nature 622, 481 (2023).
  6. S. J. Garratt, Z. Weinstein, and E. Altman, Measurements Conspire Nonlocally to Restructure Critical Quantum States, Phys. Rev. X 13, 021026 (2023).
  7. S. J. Garratt and E. Altman, Probing post-measurement entanglement without post-selection, arXiv:2305.20092  (2023).
  8. M. Ippoliti and V. Khemani, Learnability Transitions in Monitored Quantum Dynamics via Eavesdropper’s Classical Shadows, PRX Quantum 5, 020304 (2024).
  9. M. Buchhold, T. Müller, and S. Diehl, Revealing measurement-induced phase transitions by pre-selection, arXiv:2208.10506  (2022).
  10. P. Sierant and X. Turkeshi, Controlling Entanglement at Absorbing State Phase Transitions in Random Circuits, Phys. Rev. Lett. 130, 120402 (2023).
  11. I. Antoniou, V. Basios, and F. Bosco, PROBABILISTIC CONTROL OF CHAOS: THE β𝛽\betaitalic_β-ADIC RENYI MAP UNDER CONTROL, Int. J. Bifurcation Chaos 06, 1563 (1996).
  12. I. Antoniou, V. Basios, and F. Bosco, Probabilistic control of Chaos: Chaotic maps under control, Computers & Mathematics with Applications 34, 373 (1997).
  13. I. Antoniou, V. Basios, and F. Bosco, Absolute Controllability Condition for Probabilistic Control of Chaos, Int. J. Bifurcation Chaos 08, 409 (1998).
  14. A. Rényi, Representations for real numbers and their ergodic properties, Acta Mathematica Academiae Scientiarum Hungaricae 8, 477 (1957).
  15. A. Kitaev and J. Preskill, Topological Entanglement Entropy, Phys. Rev. Lett. 96, 110404 (2006).
  16. M. J. Gullans and D. A. Huse, Scalable Probes of Measurement-Induced Criticality, Phys. Rev. Lett. 125, 070606 (2020).
  17. K. Levenberg, A method for the solution of certain non-linear problems in least squares, Quart. Appl. Math. 2, 164 (1944).
  18. D. W. Marquardt, An Algorithm for Least-Squares Estimation of Nonlinear Parameters, Journal of the Society for Industrial and Applied Mathematics 11, 431 (1963).
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com