Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Video Diffusion Models are Training-free Motion Interpreter and Controller (2405.14864v3)

Published 23 May 2024 in cs.CV

Abstract: Video generation primarily aims to model authentic and customized motion across frames, making understanding and controlling the motion a crucial topic. Most diffusion-based studies on video motion focus on motion customization with training-based paradigms, which, however, demands substantial training resources and necessitates retraining for diverse models. Crucially, these approaches do not explore how video diffusion models encode cross-frame motion information in their features, lacking interpretability and transparency in their effectiveness. To answer this question, this paper introduces a novel perspective to understand, localize, and manipulate motion-aware features in video diffusion models. Through analysis using Principal Component Analysis (PCA), our work discloses that robust motion-aware feature already exists in video diffusion models. We present a new MOtion FeaTure (MOFT) by eliminating content correlation information and filtering motion channels. MOFT provides a distinct set of benefits, including the ability to encode comprehensive motion information with clear interpretability, extraction without the need for training, and generalizability across diverse architectures. Leveraging MOFT, we propose a novel training-free video motion control framework. Our method demonstrates competitive performance in generating natural and faithful motion, providing architecture-agnostic insights and applicability in a variety of downstream tasks.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com