Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Algebraic Conditions for Stability in Runge-Kutta Methods and Their Certification via Semidefinite Programming (2405.13921v1)

Published 22 May 2024 in math.NA, cs.NA, and math.OC

Abstract: In this work, we present approaches to rigorously certify $A$- and $A(\alpha)$-stability in Runge-Kutta methods through the solution of convex feasibility problems defined by linear matrix inequalities. We adopt two approaches. The first is based on sum-of-squares programming applied to the Runge-Kutta $E$-polynomial and is applicable to both $A$- and $A(\alpha)$-stability. In the second, we sharpen the algebraic conditions for $A$-stability of Cooper, Scherer, T{\"u}rke, and Wendler to incorporate the Runge-Kutta order conditions. We demonstrate how the theoretical improvement enables the practical use of these conditions for certification of $A$-stability within a computational framework. We then use both approaches to obtain rigorous certificates of stability for several diagonally implicit schemes devised in the literature.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com