Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence of the Deep Galerkin Method for Mean Field Control Problems (2405.13346v1)

Published 22 May 2024 in math.OC and stat.ML

Abstract: We establish the convergence of the deep Galerkin method (DGM), a deep learning-based scheme for solving high-dimensional nonlinear PDEs, for Hamilton-Jacobi-BeLLMan (HJB) equations that arise from the study of mean field control problems (MFCPs). Based on a recent characterization of the value function of the MFCP as the unique viscosity solution of an HJB equation on the simplex, we establish both an existence and convergence result for the DGM. First, we show that the loss functional of the DGM can be made arbitrarily small given that the value function of the MFCP possesses sufficient regularity. Then, we show that if the loss functional of the DGM converges to zero, the corresponding neural network approximators must converge uniformly to the true value function on the simplex. We also provide numerical experiments demonstrating the DGM's ability to generalize to high-dimensional HJB equations.

Citations (1)

Summary

We haven't generated a summary for this paper yet.