Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum Computing for Databases: Overview and Challenges (2405.12511v1)

Published 21 May 2024 in cs.DB

Abstract: In the decades, the general field of quantum computing has experienced remarkable progress since its inception. A plethora of researchers not only proposed quantum algorithms showing the power of quantum computing but also constructed the prototype of quantum computers, making it walk into our tangible reality. Those remarkable advancements in quantum computing have opened doors for novel applications, one of which is quantum databases. Researchers are trying to use a paradigm brought by quantum computing to revolutionize various aspects of database management systems. In this paper, we envision the synergy between quantum computing and databases with two perspectives: Quantum computing-enabled technology, and quantum computing-inspired technology. Based on this classification, we present a detailed overview of the research attained in this area, aiming to show the landscape of the field and draw a road map of future directions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (132)
  1. T. Albash and D. A. Lidar. Adiabatic quantum computation. Reviews of Modern Physics, 90(1):015002, 2018.
  2. H. AZUMA. Building partially entangled states with grover's amplitude amplification process. International Journal of Modern Physics C, 11(03):469–484, may 2000.
  3. Assembly and coherent control of a register of nuclear spin qubits. Nature Communications, 13(1):2779, 2022.
  4. Quantum algorithms for quantum chemistry and quantum materials science. Chemical Reviews, 120(22):12685–12717, 2020.
  5. Parameterized quantum circuits as machine learning models. Quantum Science and Technology, 4(4):043001, 2019.
  6. P. Benioff. The computer as a physical system: A microscopic quantum mechanical hamiltonian model of computers as represented by turing machines. Journal of Statistical Physics, 22:563–591, 1980.
  7. P. Benioff. Quantum mechanical hamiltonian models of turing machines. Journal of Statistical Physics, 29:515–546, 1982.
  8. Quantum algorithms for the subset-sum problem. In Post-Quantum Cryptography: 5th International Workshop, PQCrypto 2013, Limoges, France, June 4-7, 2013. Proceedings 5, pages 16–33. Springer, 2013.
  9. D. Bertsimas and J. Tsitsiklis. Simulated annealing. Statistical science, 8(1):10–15, 1993.
  10. Grover’s quantum search algorithm for an arbitrary initial amplitude distribution. Phys. Rev. A, 60:2742–2745, Oct 1999.
  11. Analysis of generalized grover quantum search algorithms using recursion equations. Phys. Rev. A, 63:012310, Dec 2000.
  12. Generalized grover search algorithm for arbitrary initial amplitude distribution. In Quantum Computing and Quantum Communications, 1998.
  13. T. Bittner and S. Groppe. Avoiding blocking by scheduling transactions using quantum annealing. In Proceedings of the 24th Symposium on International Database Engineering & Applications. ACM, 2020.
  14. T. Bittner and S. Groppe. Hardware accelerating the optimization of transaction schedules via quantum annealing by avoiding blocking. Open Journal of Cloud Computing (OJCC), 7(1):1–21, 2020.
  15. A quantum processor based on coherent transport of entangled atom arrays. Nature, 604(7906):451–456, 2022.
  16. Quantum annealing with more than one hundred qubits. arXiv preprint arXiv:1304.4595, 2013.
  17. D. Boneh and R. J. Lipton. Quantum cryptanalysis of hidden linear functions. In Advances in Cryptology—CRYPT0’95: 15th Annual International Cryptology Conference Santa Barbara, California, USA, August 27–31, 1995 Proceedings 15, pages 424–437. Springer, 1995.
  18. Tight bounds on quantum searching. Fortschritte der Physik, 46(4-5):493–505, jun 1998.
  19. Quantum amplitude amplification and estimation, 2002.
  20. Quantum counting. In K. G. Larsen, S. Skyum, and G. Winskel, editors, Automata, Languages and Programming, pages 820–831, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.
  21. Speed-up and entanglement in quantum searching. Quantum Inf. Comput., 2:399–409, 2000.
  22. Trapped-ion quantum computing: Progress and challenges. Applied Physics Reviews, 6(2), 2019.
  23. Opportunities for quantum acceleration of databases: Optimization of queries and transaction schedules. 2023.
  24. Quantum chemistry in the age of quantum computing. Chemical reviews, 119(19):10856–10915, 2019.
  25. Variational quantum algorithms. Nature Reviews Physics, 3(9):625–644, aug 2021.
  26. J. I. Cirac and P. Zoller. Quantum computations with cold trapped ions. Physical review letters, 74(20):4091, 1995.
  27. P. Cockshott. Quantum relational databases, 1997.
  28. D-Wave. D-wave quantum systems, 2023. https://www.dwavesys.com/, Last accessed on 2023-07-22.
  29. Materials challenges and opportunities for quantum computing hardware. Science, 372(6539):eabb2823, 2021.
  30. Gaussian boson sampling with pseudo-photon-number resolving detectors and quantum computational advantage, 2023.
  31. D. Deutsch. Quantum theory, the church–turing principle and the universal quantum computer. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 400(1818):97–117, 1985.
  32. Superconducting qubits: A short review. arXiv preprint cond-mat/0411174, 2004.
  33. Quantum-inspired support vector machine. IEEE Transactions on Neural Networks and Learning Systems, 33(12):7210–7222, 2022.
  34. Multiple query optimization using a hybrid approach of classical and quantum computing, 2021.
  35. A quantum approximate optimization algorithm, 2014.
  36. Quantum private queries: security analysis. IEEE Transactions on Information Theory, 56(7):3465–3477, 2010.
  37. Multi-qubit entanglement and algorithms on a neutral-atom quantum computer. Nature, 604(7906):457–462, 2022.
  38. Adiabatic quantum computing and quantum annealing, 07 2020.
  39. S. Groppe and J. Groppe. Optimizing transaction schedules on universal quantum computers via code generation for grover’s search algorithm. In 25th International Database Engineering & Applications Symposium. ACM, 2021.
  40. L. K. Grover. A fast quantum mechanical algorithm for database search. In G. L. Miller, editor, Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996, pages 212–219. ACM, 1996.
  41. L. K. Grover. Quantum computers can search arbitrarily large databases by a single query. Physical Review Letters, 79(23):4709–4712, dec 1997.
  42. L. K. Grover. Quantum computers can search rapidly by using almost any transformation. Physical Review Letters, 80:4329–4332, 1997.
  43. L. K. Grover. Quantum mechanics helps in searching for a needle in a haystack. Physical Review Letters, 79(2):325–328, jul 1997.
  44. L. K. Grover. Trade-offs in the quantum search algorithm. Physical Review A, 66, 2002.
  45. Index tuning with machine learning on quantum computers for large-scale database applications. In R. Bordawekar, C. Cappiello, V. Efthymiou, L. Ehrlinger, V. Gadepally, S. Galhotra, S. Geisler, S. Groppe, L. Gruenwald, A. Y. Halevy, H. Harmouch, O. Hassanzadeh, I. F. Ilyas, E. Jiménez-Ruiz, S. Krishnan, T. Lahiri, G. Li, J. Lu, W. Mauerer, U. F. Minhas, F. Naumann, M. T. Özsu, E. K. Rezig, K. Srinivas, M. Stonebraker, S. R. Valluri, M. Vidal, H. Wang, J. Wang, Y. Wu, X. Xue, M. Zaït, and K. Zeng, editors, Joint Proceedings of Workshops at the 49th International Conference on Very Large Data Bases (VLDB 2023), Vancouver, Canada, August 28 - September 1, 2023, volume 3462 of CEUR Workshop Proceedings. CEUR-WS.org, 2023.
  46. Optimized methods for inserting and deleting records and data retrieving in quantum database. 2010 12th International Conference on Transparent Optical Networks, pages 1–5, 2010.
  47. Arbitrary phase rotation of the marked state cannot be used for grover’s quantum search algorithm. Communications in Theoretical Physics, 32:335 – 338, 1999.
  48. Experimental investigation of an eight-qubit unit cell in a superconducting optimization processor. Physical Review B, 82(2):024511, 2010.
  49. Disentangling hype from practicality: on realistically achieving quantum advantage. Communications of the ACM, 66(5):82–87, 2023.
  50. General su(2) formulation for quantum searching with certainty. Phys. Rev. A, 65:052322, May 2002.
  51. IBM. The IBM quantum development roadmap, 2023. https://www.ibm.com/quantum/roadmap, Last accessed on 2023-07-22.
  52. S. Imre and F. Balazs. Non-coherent multi-user detection based on quantum search. In 2002 IEEE International Conference on Communications. Conference Proceedings. ICC 2002 (Cat. No.02CH37333), volume 1, pages 283–287 vol.1, 2002.
  53. S. Imre and F. Balázs. The generalized quantum database search algorithm. Computing, 73(3):245–269, 2004.
  54. Intel. Intel’s new chip to advance silicon spin qubit research for quantum computing, 2023. https://www.intel.com/content/www/us/en/newsroom/news/quantum-computing-chip-to-advance-research.html#gs.4awmjv, Last accessed on 2023-08-12.
  55. IonQ. IonQ Forte, 2023. https://ionq.com/quantum-systems/forte, Last accessed on 2023-07-22.
  56. S. Jóczik and A. Kiss. Quantum computation and its effects in database systems. In J. Darmont, B. Novikov, and R. Wrembel, editors, New Trends in Databases and Information Systems - ADBIS 2020 Short Papers, Lyon, France, August 25-27, 2020, Proceedings, volume 1259 of Communications in Computer and Information Science, pages 13–23. Springer, 2020.
  57. Quantum circuit design and analysis for database search applications. IEEE Transactions on Circuits and Systems I: Regular Papers, 54(11):2552–2563, 2007.
  58. A. Y. Kitaev. Fault-tolerant quantum computation by anyons. Annals of physics, 303(1):2–30, 2003.
  59. V. Lahtinen and J. Pachos. A short introduction to topological quantum computation. SciPost Physics, 3(3):021, 2017.
  60. M. Lewis and F. Glover. Quadratic unconstrained binary optimization problem preprocessing: Theory and empirical analysis, 2017.
  61. Quantum optimization and quantum learning: A survey. Ieee Access, 8:23568–23593, 2020.
  62. Qkd-based quantum private query protocol in the single-photon interference communication system. IEEE Access, 7:104749–104758, 2019.
  63. Decoy-state method for quantum-key-distribution-based quantum private query. Science China Physics, Mechanics & Astronomy, 65(4):1–8, 2022.
  64. Y. Liu and G. L. Long. Deleting a marked item from an unsorted database with a single query, 2007.
  65. G. L. Long. Grover algorithm with zero theoretical failure rate. Phys. Rev. A, 64:022307, Jul 2001.
  66. Phase matching condition for quantum search with a generalized initial state. Physics Letters A, 294(3):143–152, 2002.
  67. Phase matching in quantum searching. Physics Letters A, 262:27–34, 1999.
  68. A novel so(3) picture for quantum searching, 1999.
  69. General phase matching condition for quantum searching, 2001.
  70. Quantum computational advantage with a programmable photonic processor. Nature, 606(7912):75–81, 2022.
  71. Solving the hamiltonian cycle problem using a quantum computer. In Proceedings of the Australasian Computer Science Week Multiconference, ACSW ’19, New York, NY, USA, 2019. Association for Computing Machinery.
  72. N. Mariella and A. Simonetto. A quantum algorithm for the sub-graph isomorphism problem. ACM Transactions on Quantum Computing, 4(2), feb 2023.
  73. A leap among quantum computing and quantum neural networks: A survey. ACM Computing Surveys, 55(5):1–37, 2022.
  74. Microsoft. In a historic milestone, azure quantum demonstrates formerly elusive physics needed to build scalable topological qubits, 2022. https://news.microsoft.com/source/features/innovation/azure-quantum-majorana-topological-qubit/, Last accessed on 2023-08-12.
  75. Dynamic cost ant colony algorithm for optimize distributed database query. In Proceedings of the International Conference on Artificial Intelligence and Computer Vision (AICV2020), pages 170–181. Springer, 2020.
  76. Dynamic cost ant colony algorithm to optimize query for distributed database based on quantum-inspired approach. Symmetry, 13(1):70, 2021.
  77. O. H. Montiel Ross. A review of quantum-inspired metaheuristics: Going from classical computers to real quantum computers. IEEE Access, 8:814–838, 2020.
  78. Constructing optimal bushy join trees by solving qubo problems on quantum hardware and simulators. In Proceedings of the International Workshop on Big Data in Emergent Distributed Environments, BiDEDE ’23, New York, NY, USA, 2023. Association for Computing Machinery.
  79. Quantum computation and quantum information. Phys. Today, 54(2):60, 2001.
  80. A survey on the impacts of quantum computers on information security. In ICDIS, pages 212–218. IEEE, 2019.
  81. J. L. O’brien. Optical quantum computing. Science, 318(5856):1567–1570, 2007.
  82. Photonic quantum technologies. Nature Photonics, 3(12):687–695, 2009.
  83. Y. I. Ozhigov. Protection of information in quantum databases. Complex Syst., 11(3), 1997.
  84. Quantum search algorithm for set operation. Quantum Information Processing, 12:481–492, 2008.
  85. PASQAL. Hardware, 2023. https://www.pasqal.com/solutions/hardware, Last accessed on 2023-08-12.
  86. A. Patel. Quantum database search can do without sorting. Physical Review A, 64(3):034303, 2001.
  87. Practical quantum private query of blocks based on the two-dimensional qkd system. Quantum Information Processing, 18(8):1–13, 2019.
  88. A variational eigenvalue solver on a photonic quantum processor. Nature communications, 5(1):4213, 2014.
  89. Universal quantum logic in hot silicon qubits. Nature, 580(7803):355–359, 2020.
  90. Universal control of a six-qubit quantum processor in silicon. Nature, 609(7929):919–924, 2022.
  91. J. Preskill. Quantum computing in the NISQ era and beyond. Quantum, 2:79, aug 2018.
  92. QuTech. Qutech. creating the quantum future, 2023. https://qutech.nl/, Last accessed on 2023-08-12.
  93. J. H. Reif. Quantum information processing: Algorithms, technologies and challenges. In BIO-INSPIRED COMPUTING,(EDITED BY MM ESHAGHIAN-WILNER, 2009.
  94. Quantum databases. In Sixth Biennial Conference on Innovative Data Systems Research, CIDR 2013, Asilomar, CA, USA, January 6-9, 2013, Online Proceedings. www.cidrdb.org, 2013.
  95. T. Salman and Y. Baram. Quantum set intersection and its application to associative memory. J. Mach. Learn. Res., 13:3177–3206, 2012.
  96. M. Schönberger. Applicability of quantum computing on database query optimization. In Z. Ives, A. Bonifati, and A. E. Abbadi, editors, SIGMOD ’22: International Conference on Management of Data, Philadelphia, PA, USA, June 12 - 17, 2022, pages 2512–2514. ACM, 2022.
  97. Ready to leap (by co-design)? join order optimisation on quantum hardware. Proc. ACM Manag. Data, 1(1):92:1–92:27, 2023.
  98. Quantum optimisation of general join trees. In R. Bordawekar, C. Cappiello, V. Efthymiou, L. Ehrlinger, V. Gadepally, S. Galhotra, S. Geisler, S. Groppe, L. Gruenwald, A. Y. Halevy, H. Harmouch, O. Hassanzadeh, I. F. Ilyas, E. Jiménez-Ruiz, S. Krishnan, T. Lahiri, G. Li, J. Lu, W. Mauerer, U. F. Minhas, F. Naumann, M. T. Özsu, E. K. Rezig, K. Srinivas, M. Stonebraker, S. R. Valluri, M. Vidal, H. Wang, J. Wang, Y. Wu, X. Xue, M. Zaït, and K. Zeng, editors, Joint Proceedings of Workshops at the 49th International Conference on Very Large Data Bases (VLDB 2023), Vancouver, Canada, August 28 - September 1, 2023, volume 3462 of CEUR Workshop Proceedings. CEUR-WS.org, 2023.
  99. Access path selection in a relational database management system. In Proceedings of the 1979 ACM SIGMOD International Conference on Management of Data, SIGMOD ’79, page 23–34, New York, NY, USA, 1979. Association for Computing Machinery.
  100. Multi-bit quantum private query. Communications in Theoretical Physics, 64(3):299, 2015.
  101. X. Shi-man and S. Xin-zhi. The building and optimization of quantum database. Physics Procedia, 25:1602–1609, 2012. International Conference on Solid State Devices and Materials Science, April 1-2, 2012, Macao.
  102. P. Shor. Algorithms for quantum computation: discrete logarithms and factoring. In Proceedings 35th Annual Symposium on Foundations of Computer Science, pages 124–134, 1994.
  103. Modeling term dependencies with quantum language models for ir. In Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’13, page 653–662, New York, NY, USA, 2013. Association for Computing Machinery.
  104. Efficient quantum algorithm for solving travelling salesman problem: An ibm quantum experience. arXiv preprint arXiv:1805.10928, 2018.
  105. A quantum annealing approach for boolean satisfiability problem. In Proceedings of the 53rd Annual Design Automation Conference, pages 1–6, 2016.
  106. Single quantum querying of a database. Physical Review A, 58(3):1822–1826, sep 1998.
  107. I. Trummer and C. Koch. Multiple query optimization on the d-wave 2x adiabatic quantum computer. Proc. VLDB Endow., 9(9):648–659, 2016.
  108. Quantum boolean circuit approach for searching an unordered database. In Proceedings of the 2nd IEEE Conference on Nanotechnology, pages 315–318, 2002.
  109. A survey of quantum theory inspired approaches to information retrieval. ACM Comput. Surv., 53(5), sep 2020.
  110. C. J. van Rijsbergen. The geometry of information retrieval. Cambridge University Press, 2004.
  111. Silicon cmos architecture for a spin-based quantum computer. Nature communications, 8(1):1766, 2017.
  112. W. Vinci and D. A. Lidar. Non-stoquastic hamiltonians in quantum annealing via geometric phases. npj Quantum Information, 3(1), sep 2017.
  113. A robust quantum private query based on six-qubit with decoherence. Optik, 253:168507, 2022.
  114. Tensor product of correlated textual and visual features: A quantum theory inspired image retrieval framework. In Quantum Informatics for Cognitive, Social, and Semantic Processes, Papers from the 2010 AAAI Fall Symposium, Arlington, Virginia, USA, November 11-13, 2010, volume FS-10-08 of AAAI Technical Report. AAAI, 2010.
  115. Modeling relevance judgement inspired by quantum weak measurement. In G. Pasi, B. Piwowarski, L. Azzopardi, and A. Hanbury, editors, Advances in Information Retrieval - 40th European Conference on IR Research, ECIR 2018, Grenoble, France, March 26-29, 2018, Proceedings, volume 10772 of Lecture Notes in Computer Science, pages 424–436. Springer, 2018.
  116. Error tolerance bound in qkd-based quantum private query. IEEE Journal on Selected Areas in Communications, 38(3):517–527, 2020.
  117. Wikipedia. Quantum annealing, 2023. https://en.wikipedia.org/wiki/Quantum_annealing, Last accessed on 2023-08-01.
  118. Quantum machine learning for join order optimization using variational quantum circuits. In Proceedings of the International Workshop on Big Data in Emergent Distributed Environments, pages 1–7, 2023.
  119. Quantum machine learning: Foundation, new techniques, and opportunities for database research. In S. Das, I. Pandis, K. S. Candan, and S. Amer-Yahia, editors, Companion of the 2023 International Conference on Management of Data, SIGMOD/PODS 2023, Seattle, WA, USA, June 18-23, 2023, pages 45–52. ACM, 2023.
  120. Novel classical post-processing for quantum key distribution-based quantum private query. Quantum Inf. Process., 15(9):3833–3840, 2016.
  121. Robust qkd-based private database queries based on alternative sequences of single-qubit measurements. SCIENCE CHINA Physics, Mechanics & Astronomy, 60(12):1–11, 2017.
  122. Private database queries using one quantum state. Quantum Inf. Process., 14(3):1017–1024, 2015.
  123. A. Younes. Database manipulation on quantum computers, 2007.
  124. A. Younes and J. Miller. Automated method for building cnot based quantum circuits for boolean functions. arXiv preprint quant-ph/0304099, 2003.
  125. G. Yuan. How the quantum-inspired framework supports keyword searches on multi-model databases. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pages 3257–3260, 2020.
  126. Quantum computing for databases: A short survey and vision. In R. Bordawekar, C. Cappiello, V. Efthymiou, L. Ehrlinger, V. Gadepally, S. Galhotra, S. Geisler, S. Groppe, L. Gruenwald, A. Y. Halevy, H. Harmouch, O. Hassanzadeh, I. F. Ilyas, E. Jiménez-Ruiz, S. Krishnan, T. Lahiri, G. Li, J. Lu, W. Mauerer, U. F. Minhas, F. Naumann, M. T. Özsu, E. K. Rezig, K. Srinivas, M. Stonebraker, S. R. Valluri, M. Vidal, H. Wang, J. Wang, Y. Wu, X. Xue, M. Zaït, and K. Zeng, editors, Joint Proceedings of Workshops at the 49th International Conference on Very Large Data Bases (VLDB 2023), Vancouver, Canada, August 28 - September 1, 2023, volume 3462 of CEUR Workshop Proceedings. CEUR-WS.org, 2023.
  127. Quantum-inspired keyword search on multi-model databases. In Database Systems for Advanced Applications: 26th International Conference, DASFAA 2021, Taipei, Taiwan, April 11–14, 2021, Proceedings, Part II 26, pages 585–602. Springer, 2021.
  128. C. Zalka. Grover’s quantum searching algorithm is optimal. Phys. Rev. A, 60:2746–2751, Oct 1999.
  129. Y. Zhao. Demonstration and implementation of quantum computing in cryptanalysis. Highlights in Science, Engineering and Technology, 38:431–436, 2023.
  130. Quantum approximate optimization algorithm: Performance, mechanism, and implementation on near-term devices. Physical Review X, 10(2):021067, 2020.
  131. Q. Zhou and S. Lu. Hash function based on controlled alternate quantum walks with memory (september 2021). IEEE Transactions on Quantum Engineering, 3:1–10, 2022.
  132. Qubits made by advanced semiconductor manufacturing. Nature Electronics, 5(3):184–190, 2022.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com