Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast Stochastic Policy Gradient: Negative Momentum for Reinforcement Learning (2405.12228v1)

Published 8 May 2024 in cs.LG

Abstract: Stochastic optimization algorithms, particularly stochastic policy gradient (SPG), report significant success in reinforcement learning (RL). Nevertheless, up to now, that how to speedily acquire an optimal solution for RL is still a challenge. To tackle this issue, this work develops a fast SPG algorithm from the perspective of utilizing a momentum, coined SPG-NM. Specifically, in SPG-NM, a novel type of the negative momentum (NM) technique is applied into the classical SPG algorithm. Different from the existing NM techniques, we have adopted a few hyper-parameters in our SPG-NM algorithm. Moreover, the computational complexity is nearly same as the modern SPG-type algorithms, e.g., accelerated policy gradient (APG), which equips SPG with Nesterov's accelerated gradient (NAG). We evaluate the resulting algorithm on two classical tasks, bandit setting and Markov decision process (MDP). Numerical results in different tasks demonstrate faster convergence rate of the resulting algorithm by comparing state-of-the-art algorithms, which confirm the positive impact of NM in accelerating SPG for RL. Also, numerical experiments under different settings confirm the robustness of our SPG-NM algorithm for some certain crucial hyper-parameters, which ride the user feel free in practice.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com