Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A fully discrete evolving surface finite element method for the Cahn-Hilliard equation with a regular potential (2405.11984v1)

Published 20 May 2024 in math.NA and cs.NA

Abstract: We study two fully discrete evolving surface finite element schemes for the Cahn-Hilliard equation on an evolving surface, given a smooth potential with polynomial growth. In particular we establish optimal order error bounds for a (fully implicit) backward Euler time-discretisation, and an implicit-explicit time-discretisation, with isoparametric surface finite elements discretising space.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (44)
  1. The DUNE-ALUGrid module. arXiv preprint arXiv:1407.6954 (2014).
  2. Function spaces, time derivatives and compactness for evolving families of Banach spaces with applications to PDEs. Journal of Differential Equations 353 (2023), 268–338.
  3. An abstract framework for parabolic PDEs on evolving spaces. Portugaliae Mathematica 72, 1 (2015), 1–46.
  4. Aubin, T. Nonlinear analysis on manifolds. Monge-Ampère equations, vol. 252. Springer Science & Business Media, 2012.
  5. Interfaces: Modeling, Analysis, Numerics. Springer, 2023.
  6. An error bound for the finite element approximation of the Cahn-Hilliard equation with logarithmic free energy. Numerische Mathematik 72, 1 (1995), 1–20.
  7. Bernardi, C. Optimal finite-element interpolation on curved domains. SIAM Journal on Numerical Analysis 26, 5 (1989), 1212–1240.
  8. Stability and error estimates for non-linear Cahn–Hilliard-type equations on evolving surfaces. Numerische Mathematik 151, 1 (2022), 1–48.
  9. The Cahn–Hilliard gradient theory for phase separation with non-smooth free energy Part II: Numerical analysis. European Journal of Applied Mathematics 3, 2 (1992), 147–179.
  10. The mathematical theory of finite element methods, vol. 3. Springer, 2008.
  11. Cahn–Hilliard equations on an evolving surface. European Journal of Applied Mathematics 32, 5 (2021), 937–1000.
  12. Regularization and separation for evolving surface Cahn–Hilliard equations. SIAM Journal on Mathematical Analysis 55, 6 (2023), 6625–6675.
  13. Cahn, J. W. On spinodal decomposition. Acta metallurgica 9, 9 (1961), 795–801.
  14. Free energy of a nonuniform system. I. Interfacial free energy. The Journal of chemical physics 28, 2 (1958), 258–267.
  15. Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy. Numerische Mathematik 63, 1 (1992), 39–65.
  16. Computation of geometric partial differential equations and mean curvature flow. Acta numerica 14 (2005), 139–232.
  17. Demlow, A. Higher-order finite element methods and pointwise error estimates for elliptic problems on surfaces. SIAM Journal on Numerical Analysis 47, 2 (2009), 805–827.
  18. Finite element approximation of the Cahn-Hilliard equation on surfaces. Computer Methods in Applied Mechanics and Engineering 200, 29-32 (2011), 2458–2470.
  19. A fully discrete evolving surface finite element method. SIAM Journal on Numerical Analysis 50, 5 (2012), 2677–2694.
  20. Finite element methods for surface PDEs. Acta Numerica 22 (2013), 289–396.
  21. Runge–Kutta time discretization of parabolic differential equations on evolving surfaces. IMA Journal of Numerical Analysis 32, 2 (2012), 394–416.
  22. Numerical simulation of dealloying by surface dissolution via the evolving surface finite element method. Journal of Computational Physics 227, 23 (2008), 9727–9741.
  23. A second order splitting method for the Cahn-Hilliard equation. Numerische Mathematik 54 (1989), 575–590.
  24. Time-periodic solutions of advection-diffusion equations on moving hypersurfaces. SIAM Journal on Mathematical Analysis 47, 3 (2015), 1693–1718.
  25. Evolving surface finite element method for the Cahn–Hilliard equation. Numerische Mathematik 129, 3 (2015), 483–534.
  26. A unified theory for continuous-in-time evolving finite element space approximations to partial differential equations in evolving domains. IMA Journal of Numerical Analysis 41, 3 (2021), 1696–1845.
  27. Navier-Stokes-Cahn-Hilliard equations on evolving surfaces. arXiv preprint arXiv:2401.12044 (2024).
  28. The global dynamics of discrete semilinear parabolic equations. SIAM J. Numer. Anal. 30 (1993), 1622–1663.
  29. Error analysis for an ALE evolving surface finite element method. Numerical Methods for Partial Differential Equations 31, 2 (2015), 459–499.
  30. Foote, R. L. Regularity of the distance function. Proceedings of the American Mathematical Society 92, 1 (1984), 153–155.
  31. Numerical preservation of velocity induced invariant regions for reaction–diffusion systems on evolving surfaces. Journal of Scientific Computing 77 (2018), 971–1000.
  32. Viscoelastic Cahn–Hilliard models for tumor growth. Mathematical Models and Methods in Applied Sciences 32, 13 (2022), 2673–2758.
  33. A Cahn–Hilliard–Darcy model for tumour growth with chemotaxis and active transport. Mathematical Models and Methods in Applied Sciences 26, 06 (2016), 1095–1148.
  34. Elliptic partial differential equations of second order, vol. 2. Springer, 1977.
  35. Hebey, E. Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities: Sobolev Spaces and Inequalities, vol. 5. American Mathematical Soc., 2000.
  36. Maximal regularity of backward difference time discretization for evolving surface PDEs and its application to nonlinear problems. IMA Journal of Numerical Analysis 43, 4 (2023), 1937–1969.
  37. Error analysis for full discretizations of quasilinear parabolic problems on evolving surfaces. Numerical Methods for Partial Differential Equations 32, 4 (2016), 1200–1231.
  38. Direct discretization method for the Cahn–Hilliard equation on an evolving surface. Journal of Scientific Computing 77 (2018), 1147–1163.
  39. Backward difference time discretization of parabolic differential equations on evolving surfaces. IMA Journal of Numerical Analysis 33, 4 (2013), 1365–1385.
  40. Spinodal decomposition in Fe-Cr alloys: Experimental study at the atomic level and comparison with computer models – I. introduction and methodology. Acta Metallurgica et Materialia 43, 9 (1995), 3385–3401.
  41. Miranville, A. The Cahn–Hilliard equation: recent advances and applications. SIAM, 2019.
  42. Wu, Y. Nonlinear discrete inequalities of Bihari-type and applications. Acta Mathematicae Applicatae Sinica, English Series 29, 3 (2013), 603–614.
  43. Experimental validation of a phase-field model to predict coarsening dynamics of lipid domains in multicomponent membranes. Biochimica et Biophysica Acta (BBA)-Biomembranes 1863, 1 (2021), 183446.
  44. An isogeometric finite element formulation for phase transitions on deforming surfaces. Computer Methods in Applied Mechanics and Engineering 351 (2019), 441–477.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com