Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Transfer Learning for CSI-based Positioning with Multi-environment Meta-learning (2405.11816v1)

Published 20 May 2024 in eess.SP and cs.AI

Abstract: Utilizing deep learning (DL) techniques for radio-based positioning of user equipment (UE) through channel state information (CSI) fingerprints has demonstrated significant potential. DL models can extract complex characteristics from the CSI fingerprints of a particular environment and accurately predict the position of a UE. Nonetheless, the effectiveness of the DL model trained on CSI fingerprints is highly dependent on the particular training environment, limiting the trained model's applicability across different environments. This paper proposes a novel DL model structure consisting of two parts, where the first part aims at identifying features that are independent from any specific environment, while the second part combines those features in an environment specific way with the goal of positioning. To train such a two-part model, we propose the multi-environment meta-learning (MEML) approach for the first part to facilitate training across various environments, while the second part of the model is trained solely on data from a specific environment. Our findings indicate that employing the MEML approach for initializing the weights of the DL model for a new unseen environment significantly boosts the accuracy of UE positioning in the new target environment as well the reliability of its uncertainty estimation. This method outperforms traditional transfer learning methods, whether direct transfer learning (DTL) between environments or completely training from scratch with data from a new environment. The proposed approach is verified with real measurements for both line-of-sight (LOS) and non-LOS (NLOS) environments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. B. Zhou, A. Liu, and V. Lau, “Successive localization and beamforming in 5G mmwave MIMO communication systems,” IEEE Transactions on Signal Processing, vol. 67, no. 6, pp. 1620–1635, 2019.
  2. C. De Lima, D. Belot, R. Berkvens, A. Bourdoux, D. Dardari, M. Guillaud, M. Isomursu, E.-S. Lohan, Y. Miao, A. N. Barreto, M. R. K. Aziz, J. Saloranta, T. Sanguanpuak, H. Sarieddeen, G. Seco-Granados, J. Suutala, T. Svensson, M. Valkama, B. Van Liempd, and H. Wymeersch, “Convergent communication, sensing and localization in 6G systems: An overview of technologies, opportunities and challenges,” IEEE Access, vol. 9, pp. 26 902–26 925, 2021.
  3. Z. Wang, Z. Liu, Y. Shen, A. Conti, and M. Z. Win, “Location awareness in beyond 5G networks via reconfigurable intelligent surfaces,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 7, pp. 2011–2025, 2022.
  4. H. Chen, H. Sarieddeen, T. Ballal, H. Wymeersch, M.-S. Alouini, and T. Y. Al-Naffouri, “A tutorial on terahertz-band localization for 6G communication systems,” IEEE Communications Surveys and Tutorials, vol. 24, no. 3, pp. 1780–1815, 2022.
  5. A. Kakkavas, M. H. Castañeda García, R. A. Stirling-Gallacher, and J. A. Nossek, “Performance limits of single-anchor millimeter-wave positioning,” IEEE Transactions on Wireless Communications, vol. 18, no. 11, pp. 5196–5210, 2019.
  6. H. Chen, Y. Zhang, W. Li, X. Tao, and P. Zhang, “Confi: Convolutional neural networks based indoor Wi-Fi localization using channel state information,” IEEE Access, vol. 5, pp. 18 066–18 074, 2017.
  7. F. Yin and F. Gunnarsson, “Distributed recursive gaussian processes for rss map applied to target tracking,” IEEE Journal of Selected Topics in Signal Processing, vol. 11, no. 3, pp. 492–503, 2017.
  8. M. N. de Sousa and R. S. Thomä, “Enhancement of localization systems in nlos urban scenario with multipath ray tracing fingerprints and machine learning,” Sensors, vol. 18, no. 11, p. 4073, Nov 2018. [Online]. Available: http://dx.doi.org/10.3390/s18114073
  9. M. Widmaier, M. Arnold, S. Dorner, S. Cammerer, and S. ten Brink, “Towards practical indoor positioning based on massive MIMO systems,” in 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), 2019, pp. 1–6.
  10. M. M. Butt, A. Pantelidou, and I. Z. Kovács, “Ml-assisted ue positioning: Performance analysis and 5G architecture enhancements,” IEEE Open Journal of Vehicular Technology, vol. 2, pp. 377–388, 2021.
  11. M. Stahlke, T. Feigl, S. Kram, B. M. Eskofier, and C. Mutschler, “Uncertainty-based fingerprinting model selection for radio localization,” 2023 13th International Conference on Indoor Positioning and Indoor Navigation (IPIN), pp. 1–6, 2023.
  12. X. Wang, L. Gao, and S. Mao, “CSI phase fingerprinting for indoor localization with a deep learning approach,” IEEE Internet of Things Journal, vol. 3, pp. 1113–1123, 2016.
  13. M. Arnold, S. Dorner, S. Cammerer, and S. Ten Brink, “On deep learning-based massive MIMO indoor user localization,” in 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2018, pp. 1–5.
  14. J. Vieira, E. Leitinger, M. Sarajlic, X. Li, and F. Tufvesson, “Deep convolutional neural networks for massive MIMO fingerprint-based positioning,” in 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), 2017, pp. 1–6.
  15. A. Foliadis, M. H. Castañeda Garcia, R. A. Stirling-Gallacher, and R. S. Thomä, “CSI-based localization with cnns exploiting phase information,” in 2021 IEEE Wireless Communications and Networking Conference (WCNC), 2021, pp. 1–6.
  16. S. D. Bast, A. P. Guevara, and S. Pollin, “CSI-based positioning in massive MIMO systems using convolutional neural networks,” in 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), 2020, pp. 1–5.
  17. M. Stahlke, T. Feigl, M. H. C. García, R. A. Stirling-Gallacher, J. Seitz, and C. Mutschler, “Transfer learning to adapt 5G AI-based fingerprint localization across environments,” in 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring), 2022, pp. 1–5.
  18. A. Foliadis, M. H. Castañeda Garcia, R. A. Stirling-Gallacher, and R. S. Thomä, “Reliable deep learning based localization with CSI fingerprints and multiple base stations,” in ICC 2022 - IEEE International Conference on Communications, 2022, pp. 3214–3219.
  19. A. Foliadis, M. H. Castaneda, R. A. Stirling-Gallacher, and R. S. Thoma, “Deep learning based positioning with multi-task learning and uncertainty-based fusion,” ArXiv, vol. abs/2403.08565v1, 2024.
  20. T. M. Hospedales, A. Antoniou, P. Micaelli, and A. J. Storkey, “Meta-learning in neural networks: A survey,” IEEE transactions on pattern analysis and machine intelligence, vol. PP, 2021.
  21. A. Owfi, C. Lin, L. Guo, F. Afghah, J. Ashdown, and K. Turck, “A meta-learning based generalizable indoor localization model using channel state information,” 2023.
  22. C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast adaptation of deep networks,” in International Conference on Machine Learning, 2017.
  23. A. Foliadis, M. H. Castañeda Garcia, R. A. Stirling-Gallacher, and R. S. Thomä, “Multi-environment based meta-learning with CSI fingerprints for radio based positioning,” in 2023 IEEE Wireless Communications and Networking Conference (WCNC), 2023, pp. 1–6.
  24. J. Howard and S. Ruder, “Universal language model fine-tuning for text classification,” in Annual Meeting of the Association for Computational Linguistics, 2018.
  25. A. Kendall and Y. Gal, “What uncertainties do we need in bayesian deep learning for computer vision?” ArXiv, vol. abs/1703.04977, 2017.
  26. R. Cipolla, Y. Gal, and A. all, “Multi-task learning using uncertainty to weigh losses for scene geometry and semantics,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 7482–7491.
  27. T. Gneiting and A. E. Raftery, “Strictly proper scoring rules, prediction, and estimation,” Journal of the American Statistical Association, vol. 102, pp. 359 – 378, 2007.
  28. F. Euchner, M. Gauger, S. Dörner, and S. ten Brink, “A Distributed Massive MIMO Channel Sounder for ”Big CSI Data”-driven Machine Learning,” in WSA 2021; 25th International ITG Workshop on Smart Antennas, 2021.
  29. B. Zhang, H. Sifaou, and G. Y. Li, “CSI-fingerprinting indoor localization via attention-augmented residual convolutional neural network,” IEEE Transactions on Wireless Communications, vol. 22, no. 8, pp. 5583–5597, 2023.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com