Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
98 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Shortcut to Chemically Accurate Quantum Computing via Density-based Basis-set Correction (2405.11567v3)

Published 19 May 2024 in physics.chem-ph and quant-ph

Abstract: Using GPU-accelerated state-vector emulation, we propose to embed a quantum computing ansatz into density-functional theory via density-based basis-set corrections (DBBSC) to obtain quantitative quantum-chemistry results on molecules that would otherwise require brute-force quantum calculations using hundreds of logical qubits. Indeed, accessing a quantitative description of chemical systems while minimizing quantum resources is an essential challenge given the limited qubit capabilities of current quantum processors. We provide a shortcut towards chemically accurate quantum computations by approaching the complete-basis-set limit through coupling the DBBSC approach, applied to any given variational ansatz, to an on-the-fly crafting of basis sets specifically adapted to a given system and user-defined qubit budget. The resulting approach self-consistently accelerates the basis-set convergence, improving electronic densities, ground-state energies, and first-order properties (e.g. dipole moments), but can also serve as a classical, a posteriori, energy correction to quantum hardware calculations with expected applications in drug design and materials science.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (54)
  1. A. Y. Kitaev, “Quantum measurements and the abelian stabilizer problem,” arXiv preprint quant-ph/9511026, 1995.
  2. A. Aspuru-Guzik, A. D. Dutoi, P. J. Love, and M. Head-Gordon, “Simulated quantum computation of molecular energies,” Science, vol. 309, no. 5741, pp. 1704–1707, 2005.
  3. M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information. Cambridge University Press, 2010.
  4. J. D. Whitfield, J. Biamonte, and A. Aspuru-Guzik, “Simulation of electronic structure hamiltonians using quantum computers,” Molecular Physics, vol. 109, no. 5, pp. 735–750, 2011.
  5. A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-Guzik, and J. L. O’brien, “A variational eigenvalue solver on a photonic quantum processor,” Nature Communications, vol. 5, no. 1, pp. 1–7, 2014.
  6. J. Tilly, H. Chen, S. Cao, D. Picozzi, K. Setia, Y. Li, E. Grant, L. Wossnig, I. Rungger, G. H. Booth, et al., “The variational quantum eigensolver: a review of methods and best practices,” Physics Reports, vol. 986, pp. 1–128, 2022.
  7. P.-F. Loos, B. Pradines, A. Scemama, J. Toulouse, and E. Giner, “A density-based basis-set correction for wave function theory,” Journal of Physical Chemistry Letters, vol. 10, no. 11, pp. 2931–2937, 2019.
  8. E. Giner, B. Pradines, A. Ferté, R. Assaraf, A. Savin, and J. Toulouse, “Curing basis-set convergence of wave-function theory using density-functional theory: A systematically improvable approach,” Journal of Chemical Physics, vol. 149, p. 194301, 2018.
  9. E. Giner, A. Scemama, J. Toulouse, and P.-F. Loos, “Chemically accurate excitation energies with small basis sets,” Journal of Chemical Physics, vol. 151, no. 14, p. 144118, 2019.
  10. P.-F. Loos, B. Pradines, A. Scemama, E. Giner, and J. Toulouse, “Density-Based Basis-Set Incompleteness Correction for GW Methods,” Journal of Chemical Theory and Computation, vol. 16, pp. 1018–1028, Feb. 2020.
  11. E. Giner, A. Scemama, P.-F. Loos, and J. Toulouse, “A basis-set error correction based on density-functional theory for strongly correlated molecular systems,” Journal of Chemical Physics, vol. 152, p. 174104, May 2020.
  12. E. Giner, D. Traore, B. Pradines, and J. Toulouse, “Self-consistent density-based basis-set correction: How much do we lower total energies and improve dipole moments?,” Journal of Chemical Physics, vol. 155, p. 044109, Jul 2021.
  13. D. Traore, E. Giner, and J. Toulouse, “Basis-set correction based on density-functional theory: Rigorous framework for a one-dimensional model,” The Journal of Chemical Physics, vol. 156, no. 4, 2022.
  14. D. Traore, J. Toulouse, and E. Giner, “Basis-set correction for coupled-cluster estimation of dipole moments,” The Journal of Chemical Physics, vol. 156, no. 17, 2022.
  15. D. Traore, E. Giner, and J. Toulouse, “Basis-set correction based on density-functional theory: Linear-response formalism for excited-state energies,” The Journal of Chemical Physics, vol. 158, no. 23, 2023.
  16. A. Hesselmann, E. Giner, P. Reinhardt, P. Knowles, H.-J. Werner, and J. Toulouse, “A density-fitting implementation of the density-based basis-set correction method,” Journal of Computational Chemistry, 2024.
  17. T. H. Dunning, “Gaussian basis sets for use in correlated molecular calculations. i. the atoms boron through neon and hydrogen,” Journal of Chemical Physics, vol. 90, p. 1007, 1989.
  18. F. Jensen, “Unifying general and segmented contracted basis sets. Segmented polarization consistent basis sets,” Journal of chemical theory and computation, vol. 10, no. 3, pp. 1074–1085, 2014.
  19. F. Aquilante, L. Boman, J. Boström, H. Koch, R. Lindh, A. S. de Merás, and T. B. Pedersen, “Cholesky decomposition techniques in electronic structure theory,” Linear-Scaling Techniques in Computational Chemistry and Physics: Methods and Applications, pp. 301–343, 2011.
  20. T. B. Pedersen, S. Lehtola, I. Fdez. Galván, and R. Lindh, “The versatility of the Cholesky decomposition in electronic structure theory,” Wiley Interdisciplinary Reviews: Computational Molecular Science, vol. 14, no. 1, p. e1692, 2024.
  21. S. Lehtola, “Curing basis set overcompleteness with pivoted Cholesky decompositions,” The Journal of Chemical Physics, vol. 151, no. 24, 2019.
  22. O. Schutt and J. VandeVondele, “Machine learning adaptive basis sets for efficient large scale density functional theory simulation,” Journal of Chemical Theory and Computation, vol. 14, no. 8, pp. 4168–4175, 2018.
  23. Y. Mao, P. R. Horn, N. Mardirossian, T. Head-Gordon, C.-K. Skylaris, and M. Head-Gordon, “Approaching the basis set limit for DFT calculations using an environment-adapted minimal basis with perturbation theory: Formulation, proof of concept, and a pilot implementation,” The Journal of Chemical Physics, vol. 145, no. 4, 2016.
  24. W. Wang and J. D. Whitfield, “Basis set generation and optimization in the nisq era with quiqbox.jl,” Journal of Chemical Theory and Computation, vol. 19, no. 22, pp. 8032–8052, 2023. PMID: 37924295.
  25. H.-Y. Kwon, G. M. Curtin, Z. Morrow, C. Kelley, and E. Jakubikova, “Adaptive basis sets for practical quantum computing,” International Journal of Quantum Chemistry, vol. 123, no. 14, p. e27123, 2023.
  26. J. S. Kottmann, P. Schleich, T. Tamayo-Mendoza, and A. Aspuru-Guzik, “Reducing qubit requirements while maintaining numerical precision for the variational quantum eigensolver: A basis-set-free approach,” The Journal of Physical Chemistry Letters, vol. 12, no. 1, pp. 663–673, 2021. PMID: 33393305.
  27. E. Posenitskiy, V. G. Chilkuri, A. Ammar, M. Hapka, K. Pernal, R. Shinde, E. J. Landinez Borda, C. Filippi, K. Nakano, O. Kohulák, et al., “TREXIO: A file format and library for quantum chemistry,” The Journal of Chemical Physics, vol. 158, no. 17, 2023.
  28. I.-M. Lygatsika, Méthodes numériques pour les discrétisations Gaussiennes des problèmes en structure électronique. Phd thesis, Sorbonne Université, Paris, France, October 2023.
  29. S. R. Jensen, S. Saha, J. A. Flores-Livas, W. Huhn, V. Blum, S. Goedecker, and L. Frediani, “The Elephant in the Room of Density Functional Theory Calculations,” The Journal of Physical Chemistry Letters, vol. 8, no. 7, pp. 1449–1457, 2017. PMID: 28291362.
  30. C. Lucas, “LAPACK-style codes for level 2 and 3 pivoted Cholesky factorizations,” LAPACK Working, vol. 4, no. 5, 2004.
  31. Y. S. Yordanov, V. Armaos, C. H. Barnes, and D. R. Arvidsson-Shukur, “Qubit-excitation-based adaptive variational quantum eigensolver,” Communications Physics, vol. 4, no. 1, pp. 1–11, 2021.
  32. O. Adjoua and C. Feniou, “Sorbonne Université, cnrs and Qubit Pharmaceuticals,” 2023.
  33. B. Huron, J. Malrieu, and P. Rancurel, “Iterative perturbation calculations of ground and excited state energies from multiconfigurational zeroth-order wavefunctions,” The Journal of Chemical Physics, vol. 58, no. 12, pp. 5745–5759, 1973.
  34. C. Feniou, M. Hassan, D. Traoré, E. Giner, Y. Maday, and J.-P. Piquemal, “Overlap-ADAPT-VQE: Practical Quantum Chemistry on Quantum Computers via Overlap-Guided Compact Ansätze,” Communications Physics, vol. 6, 2023.
  35. C. Feniou, O. Adjoua, B. Claudon, J. Zylberman, E. Giner, and J.-P. Piquemal, “Sparse quantum state preparation for strongly correlated systems,” The Journal of Physical Chemistry Letters, vol. 15, no. 11, pp. 3197–3205, 2024.
  36. T. Helgaker, W. Klopper, H. Koch, and J. Noga, “Basis-set convergence of correlated calculations on water,” The Journal of Chemical Physics, vol. 106, no. 23, pp. 9639–9646, 1997.
  37. I. Kassal and A. Aspuru-Guzik, “Quantum algorithm for molecular properties and geometry optimization,” The Journal of Chemical Physics, vol. 131, no. 22, 2009.
  38. Y. Garniron, T. Applencourt, K. Gasperich, A. Benali, A. Ferté, J. Paquier, B. Pradines, R. Assaraf, P. Reinhardt, J. Toulouse, P. Barbaresco, N. Renon, G. David, J.-P. Malrieu, M. Véril, M. Caffarel, P.-F. Loos, E. Giner, and A. Scemama, “Quantum Package 2.0: An Open-Source Determinant-Driven Suite of Programs,” Journal of Chemical Theory and Computation, vol. 15, no. 6, pp. 3591–3609, 2019. PMID: 31082265.
  39. B. Huron, J. P. Malrieu, and P. Rancurel, “Iterative perturbation calculations of ground and excited state energies from multiconfigurational zeroth-order wavefunctions,” Journal of Chemical Physics, vol. 58, pp. 5745–5759, Jun 1973.
  40. J. A. Pople, Modern theoretical chemistry. Plenum, New York, 1976.
  41. E. R. Davidson and D. Feller, “Basis set selection for molecular calculations,” Chemical Reviews, vol. 86, no. 4, pp. 681–696, 1986.
  42. N. M. Tubman, C. Mejuto-Zaera, J. M. Epstein, D. Hait, D. S. Levine, W. Huggins, Z. Jiang, J. R. McClean, R. Babbush, M. Head-Gordon, and K. B. Whaley, “Postponing the orthogonality catastrophe: efficient state preparation for electronic structure simulations on quantum devices,” arXiv preprint arXiv:1809.05523, 2018.
  43. J. Almlöf, B. J. Deleeuw, P. R. Taylor, C. W. Bauschlicher Jr, and P. Siegbahn, “The dissociation energy of N2,” International Journal of Quantum Chemistry, vol. 36, no. S23, pp. 345–354, 1989.
  44. K. A. Peterson and T. H. Dunning Jr, “Intrinsic errors in several ab initio methods: the dissociation energy of N2,” The Journal of Physical Chemistry, vol. 99, no. 12, pp. 3898–3901, 1995.
  45. J. Robledo-Moreno, M. Motta, H. Haas, A. Javadi-Abhari, P. Jurcevic, W. Kirby, S. Martiel, K. Sharma, S. Sharma, T. Shirakawa, et al., “Chemistry beyond exact solutions on a quantum-centric supercomputer,” arXiv preprint arXiv:2405.05068, 2024.
  46. J. Provazza, K. Gunst, H. Zhai, G. K.-L. Chan, T. Shiozaki, N. C. Rubin, and A. F. White, “Fast emulation of fermionic circuits with matrix product states,” Journal of Chemical Theory and Computation, 2024. DOI: 10.1021/acs.jctc.4c00200.
  47. A. Halkier, W. Klopper, T. Helgaker, and P. Jørgensen, “Basis-set convergence of the molecular electric dipole moment,” The Journal of Chemical Physics, vol. 111, no. 10, pp. 4424–4430, 1999.
  48. A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow, and J. M. Gambetta, “Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets,” Nature, vol. 549, no. 7671, pp. 242–246, 2017.
  49. W. Sennane, J.-P. Piquemal, and M. J. Rančić, “Calculating the ground-state energy of benzene under spatial deformations with noisy quantum computing,” Physical Review A, vol. 107, no. 1, p. 012416, 2023.
  50. C. Feniou, B. Claudon, M. Hassan, A. Courtat, O. Adjoua, Y. Maday, and J.-P. Piquemal, “Greedy gradient-free adaptive variational quantum algorithms on a noisy intermediate scale quantum computer,” arXiv preprint arXiv:2306.17159, 2023.
  51. M. Haidar, M. J. Rančić, T. Ayral, Y. Maday, and J.-P. Piquemal, “Open source variational quantum eigensolver extension of the quantum learning machine for quantum chemistry,” WIREs Computational Molecular Science, vol. 13, no. 5, p. e1664, 2023.
  52. M. Haidar, M. J. Rančić, Y. Maday, and J.-P. Piquemal, “Extension of the trotterized unitary coupled cluster to triple excitations,” The Journal of Physical Chemistry A, vol. 127, no. 15, pp. 3543–3550, 2023.
  53. H. Bayraktar, A. Charara, D. Clark, S. Cohen, T. Costa, Y.-L. L. Fang, Y. Gao, J. Guan, J. Gunnels, A. Haidar, et al., “cuquantum sdk: A high-performance library for accelerating quantum science,” in 2023 IEEE International Conference on Quantum Computing and Engineering (QCE), vol. 1, pp. 1050–1061, IEEE, 2023.
  54. J.-S. Kim, A. McCaskey, B. Heim, M. Modani, S. Stanwyck, and T. Costa, “Cuda quantum: The platform for integrated quantum-classical computing,” in 2023 60th ACM/IEEE Design Automation Conference (DAC), pp. 1–4, IEEE, 2023.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com