Shortcut to Chemically Accurate Quantum Computing via Density-based Basis-set Correction (2405.11567v3)
Abstract: Using GPU-accelerated state-vector emulation, we propose to embed a quantum computing ansatz into density-functional theory via density-based basis-set corrections (DBBSC) to obtain quantitative quantum-chemistry results on molecules that would otherwise require brute-force quantum calculations using hundreds of logical qubits. Indeed, accessing a quantitative description of chemical systems while minimizing quantum resources is an essential challenge given the limited qubit capabilities of current quantum processors. We provide a shortcut towards chemically accurate quantum computations by approaching the complete-basis-set limit through coupling the DBBSC approach, applied to any given variational ansatz, to an on-the-fly crafting of basis sets specifically adapted to a given system and user-defined qubit budget. The resulting approach self-consistently accelerates the basis-set convergence, improving electronic densities, ground-state energies, and first-order properties (e.g. dipole moments), but can also serve as a classical, a posteriori, energy correction to quantum hardware calculations with expected applications in drug design and materials science.
- A. Y. Kitaev, “Quantum measurements and the abelian stabilizer problem,” arXiv preprint quant-ph/9511026, 1995.
- A. Aspuru-Guzik, A. D. Dutoi, P. J. Love, and M. Head-Gordon, “Simulated quantum computation of molecular energies,” Science, vol. 309, no. 5741, pp. 1704–1707, 2005.
- M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information. Cambridge University Press, 2010.
- J. D. Whitfield, J. Biamonte, and A. Aspuru-Guzik, “Simulation of electronic structure hamiltonians using quantum computers,” Molecular Physics, vol. 109, no. 5, pp. 735–750, 2011.
- A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-Guzik, and J. L. O’brien, “A variational eigenvalue solver on a photonic quantum processor,” Nature Communications, vol. 5, no. 1, pp. 1–7, 2014.
- J. Tilly, H. Chen, S. Cao, D. Picozzi, K. Setia, Y. Li, E. Grant, L. Wossnig, I. Rungger, G. H. Booth, et al., “The variational quantum eigensolver: a review of methods and best practices,” Physics Reports, vol. 986, pp. 1–128, 2022.
- P.-F. Loos, B. Pradines, A. Scemama, J. Toulouse, and E. Giner, “A density-based basis-set correction for wave function theory,” Journal of Physical Chemistry Letters, vol. 10, no. 11, pp. 2931–2937, 2019.
- E. Giner, B. Pradines, A. Ferté, R. Assaraf, A. Savin, and J. Toulouse, “Curing basis-set convergence of wave-function theory using density-functional theory: A systematically improvable approach,” Journal of Chemical Physics, vol. 149, p. 194301, 2018.
- E. Giner, A. Scemama, J. Toulouse, and P.-F. Loos, “Chemically accurate excitation energies with small basis sets,” Journal of Chemical Physics, vol. 151, no. 14, p. 144118, 2019.
- P.-F. Loos, B. Pradines, A. Scemama, E. Giner, and J. Toulouse, “Density-Based Basis-Set Incompleteness Correction for GW Methods,” Journal of Chemical Theory and Computation, vol. 16, pp. 1018–1028, Feb. 2020.
- E. Giner, A. Scemama, P.-F. Loos, and J. Toulouse, “A basis-set error correction based on density-functional theory for strongly correlated molecular systems,” Journal of Chemical Physics, vol. 152, p. 174104, May 2020.
- E. Giner, D. Traore, B. Pradines, and J. Toulouse, “Self-consistent density-based basis-set correction: How much do we lower total energies and improve dipole moments?,” Journal of Chemical Physics, vol. 155, p. 044109, Jul 2021.
- D. Traore, E. Giner, and J. Toulouse, “Basis-set correction based on density-functional theory: Rigorous framework for a one-dimensional model,” The Journal of Chemical Physics, vol. 156, no. 4, 2022.
- D. Traore, J. Toulouse, and E. Giner, “Basis-set correction for coupled-cluster estimation of dipole moments,” The Journal of Chemical Physics, vol. 156, no. 17, 2022.
- D. Traore, E. Giner, and J. Toulouse, “Basis-set correction based on density-functional theory: Linear-response formalism for excited-state energies,” The Journal of Chemical Physics, vol. 158, no. 23, 2023.
- A. Hesselmann, E. Giner, P. Reinhardt, P. Knowles, H.-J. Werner, and J. Toulouse, “A density-fitting implementation of the density-based basis-set correction method,” Journal of Computational Chemistry, 2024.
- T. H. Dunning, “Gaussian basis sets for use in correlated molecular calculations. i. the atoms boron through neon and hydrogen,” Journal of Chemical Physics, vol. 90, p. 1007, 1989.
- F. Jensen, “Unifying general and segmented contracted basis sets. Segmented polarization consistent basis sets,” Journal of chemical theory and computation, vol. 10, no. 3, pp. 1074–1085, 2014.
- F. Aquilante, L. Boman, J. Boström, H. Koch, R. Lindh, A. S. de Merás, and T. B. Pedersen, “Cholesky decomposition techniques in electronic structure theory,” Linear-Scaling Techniques in Computational Chemistry and Physics: Methods and Applications, pp. 301–343, 2011.
- T. B. Pedersen, S. Lehtola, I. Fdez. Galván, and R. Lindh, “The versatility of the Cholesky decomposition in electronic structure theory,” Wiley Interdisciplinary Reviews: Computational Molecular Science, vol. 14, no. 1, p. e1692, 2024.
- S. Lehtola, “Curing basis set overcompleteness with pivoted Cholesky decompositions,” The Journal of Chemical Physics, vol. 151, no. 24, 2019.
- O. Schutt and J. VandeVondele, “Machine learning adaptive basis sets for efficient large scale density functional theory simulation,” Journal of Chemical Theory and Computation, vol. 14, no. 8, pp. 4168–4175, 2018.
- Y. Mao, P. R. Horn, N. Mardirossian, T. Head-Gordon, C.-K. Skylaris, and M. Head-Gordon, “Approaching the basis set limit for DFT calculations using an environment-adapted minimal basis with perturbation theory: Formulation, proof of concept, and a pilot implementation,” The Journal of Chemical Physics, vol. 145, no. 4, 2016.
- W. Wang and J. D. Whitfield, “Basis set generation and optimization in the nisq era with quiqbox.jl,” Journal of Chemical Theory and Computation, vol. 19, no. 22, pp. 8032–8052, 2023. PMID: 37924295.
- H.-Y. Kwon, G. M. Curtin, Z. Morrow, C. Kelley, and E. Jakubikova, “Adaptive basis sets for practical quantum computing,” International Journal of Quantum Chemistry, vol. 123, no. 14, p. e27123, 2023.
- J. S. Kottmann, P. Schleich, T. Tamayo-Mendoza, and A. Aspuru-Guzik, “Reducing qubit requirements while maintaining numerical precision for the variational quantum eigensolver: A basis-set-free approach,” The Journal of Physical Chemistry Letters, vol. 12, no. 1, pp. 663–673, 2021. PMID: 33393305.
- E. Posenitskiy, V. G. Chilkuri, A. Ammar, M. Hapka, K. Pernal, R. Shinde, E. J. Landinez Borda, C. Filippi, K. Nakano, O. Kohulák, et al., “TREXIO: A file format and library for quantum chemistry,” The Journal of Chemical Physics, vol. 158, no. 17, 2023.
- I.-M. Lygatsika, Méthodes numériques pour les discrétisations Gaussiennes des problèmes en structure électronique. Phd thesis, Sorbonne Université, Paris, France, October 2023.
- S. R. Jensen, S. Saha, J. A. Flores-Livas, W. Huhn, V. Blum, S. Goedecker, and L. Frediani, “The Elephant in the Room of Density Functional Theory Calculations,” The Journal of Physical Chemistry Letters, vol. 8, no. 7, pp. 1449–1457, 2017. PMID: 28291362.
- C. Lucas, “LAPACK-style codes for level 2 and 3 pivoted Cholesky factorizations,” LAPACK Working, vol. 4, no. 5, 2004.
- Y. S. Yordanov, V. Armaos, C. H. Barnes, and D. R. Arvidsson-Shukur, “Qubit-excitation-based adaptive variational quantum eigensolver,” Communications Physics, vol. 4, no. 1, pp. 1–11, 2021.
- O. Adjoua and C. Feniou, “Sorbonne Université, cnrs and Qubit Pharmaceuticals,” 2023.
- B. Huron, J. Malrieu, and P. Rancurel, “Iterative perturbation calculations of ground and excited state energies from multiconfigurational zeroth-order wavefunctions,” The Journal of Chemical Physics, vol. 58, no. 12, pp. 5745–5759, 1973.
- C. Feniou, M. Hassan, D. Traoré, E. Giner, Y. Maday, and J.-P. Piquemal, “Overlap-ADAPT-VQE: Practical Quantum Chemistry on Quantum Computers via Overlap-Guided Compact Ansätze,” Communications Physics, vol. 6, 2023.
- C. Feniou, O. Adjoua, B. Claudon, J. Zylberman, E. Giner, and J.-P. Piquemal, “Sparse quantum state preparation for strongly correlated systems,” The Journal of Physical Chemistry Letters, vol. 15, no. 11, pp. 3197–3205, 2024.
- T. Helgaker, W. Klopper, H. Koch, and J. Noga, “Basis-set convergence of correlated calculations on water,” The Journal of Chemical Physics, vol. 106, no. 23, pp. 9639–9646, 1997.
- I. Kassal and A. Aspuru-Guzik, “Quantum algorithm for molecular properties and geometry optimization,” The Journal of Chemical Physics, vol. 131, no. 22, 2009.
- Y. Garniron, T. Applencourt, K. Gasperich, A. Benali, A. Ferté, J. Paquier, B. Pradines, R. Assaraf, P. Reinhardt, J. Toulouse, P. Barbaresco, N. Renon, G. David, J.-P. Malrieu, M. Véril, M. Caffarel, P.-F. Loos, E. Giner, and A. Scemama, “Quantum Package 2.0: An Open-Source Determinant-Driven Suite of Programs,” Journal of Chemical Theory and Computation, vol. 15, no. 6, pp. 3591–3609, 2019. PMID: 31082265.
- B. Huron, J. P. Malrieu, and P. Rancurel, “Iterative perturbation calculations of ground and excited state energies from multiconfigurational zeroth-order wavefunctions,” Journal of Chemical Physics, vol. 58, pp. 5745–5759, Jun 1973.
- J. A. Pople, Modern theoretical chemistry. Plenum, New York, 1976.
- E. R. Davidson and D. Feller, “Basis set selection for molecular calculations,” Chemical Reviews, vol. 86, no. 4, pp. 681–696, 1986.
- N. M. Tubman, C. Mejuto-Zaera, J. M. Epstein, D. Hait, D. S. Levine, W. Huggins, Z. Jiang, J. R. McClean, R. Babbush, M. Head-Gordon, and K. B. Whaley, “Postponing the orthogonality catastrophe: efficient state preparation for electronic structure simulations on quantum devices,” arXiv preprint arXiv:1809.05523, 2018.
- J. Almlöf, B. J. Deleeuw, P. R. Taylor, C. W. Bauschlicher Jr, and P. Siegbahn, “The dissociation energy of N2,” International Journal of Quantum Chemistry, vol. 36, no. S23, pp. 345–354, 1989.
- K. A. Peterson and T. H. Dunning Jr, “Intrinsic errors in several ab initio methods: the dissociation energy of N2,” The Journal of Physical Chemistry, vol. 99, no. 12, pp. 3898–3901, 1995.
- J. Robledo-Moreno, M. Motta, H. Haas, A. Javadi-Abhari, P. Jurcevic, W. Kirby, S. Martiel, K. Sharma, S. Sharma, T. Shirakawa, et al., “Chemistry beyond exact solutions on a quantum-centric supercomputer,” arXiv preprint arXiv:2405.05068, 2024.
- J. Provazza, K. Gunst, H. Zhai, G. K.-L. Chan, T. Shiozaki, N. C. Rubin, and A. F. White, “Fast emulation of fermionic circuits with matrix product states,” Journal of Chemical Theory and Computation, 2024. DOI: 10.1021/acs.jctc.4c00200.
- A. Halkier, W. Klopper, T. Helgaker, and P. Jørgensen, “Basis-set convergence of the molecular electric dipole moment,” The Journal of Chemical Physics, vol. 111, no. 10, pp. 4424–4430, 1999.
- A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow, and J. M. Gambetta, “Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets,” Nature, vol. 549, no. 7671, pp. 242–246, 2017.
- W. Sennane, J.-P. Piquemal, and M. J. Rančić, “Calculating the ground-state energy of benzene under spatial deformations with noisy quantum computing,” Physical Review A, vol. 107, no. 1, p. 012416, 2023.
- C. Feniou, B. Claudon, M. Hassan, A. Courtat, O. Adjoua, Y. Maday, and J.-P. Piquemal, “Greedy gradient-free adaptive variational quantum algorithms on a noisy intermediate scale quantum computer,” arXiv preprint arXiv:2306.17159, 2023.
- M. Haidar, M. J. Rančić, T. Ayral, Y. Maday, and J.-P. Piquemal, “Open source variational quantum eigensolver extension of the quantum learning machine for quantum chemistry,” WIREs Computational Molecular Science, vol. 13, no. 5, p. e1664, 2023.
- M. Haidar, M. J. Rančić, Y. Maday, and J.-P. Piquemal, “Extension of the trotterized unitary coupled cluster to triple excitations,” The Journal of Physical Chemistry A, vol. 127, no. 15, pp. 3543–3550, 2023.
- H. Bayraktar, A. Charara, D. Clark, S. Cohen, T. Costa, Y.-L. L. Fang, Y. Gao, J. Guan, J. Gunnels, A. Haidar, et al., “cuquantum sdk: A high-performance library for accelerating quantum science,” in 2023 IEEE International Conference on Quantum Computing and Engineering (QCE), vol. 1, pp. 1050–1061, IEEE, 2023.
- J.-S. Kim, A. McCaskey, B. Heim, M. Modani, S. Stanwyck, and T. Costa, “Cuda quantum: The platform for integrated quantum-classical computing,” in 2023 60th ACM/IEEE Design Automation Conference (DAC), pp. 1–4, IEEE, 2023.