Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Testing spatial curvature in an anisotropic extension of $w$CDM model with low redshift data (2405.11534v1)

Published 19 May 2024 in astro-ph.CO and gr-qc

Abstract: In this letter, we report the observational constraints on a Bianchi type I anisotropic extension of $w$CDM model with spatial curvature from observational data including Baryon Acoustic Oscillations (BAO), Cosmic chronometers (CC), Big Bang nucleosynthesis (BBN), Pantheon+ (PP) compilation of SNe Ia and SH0ES Cepheid host distance anchors. The anisotropy is found to be of the order $10{-13}$, which interplay with spatial curvature to reduce $H_0$ tension by $\sim 1\sigma$ as found in the analyses with BAO+CC+BBN+PP combination of data, while no significant effect of anisotropy is observed with BAO+CC+BBN+PPSH0ES combination of data. A closed Universe is favored by $w$CDM as well as anisotropic $w$CDM models with spatial curvature in analyses with BAO+CC+BBN+PP combination of data. An observation of an open Universe from $w$CDM model with spatial curvature in analyses with BAO+CC+BBN+PPSH0ES combination of data and a closed Universe from anisotropic $w$CDM model with curvature in analyses with same combination of data is made. The quintessence form of dark energy is favored at 95\% CL in both analyses.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. J. Dossett and M. Ishak, Physical Review D 86, 103008 (2012).
  2. Ciufolini and Demianski, Physical review. D, Particles and fields 34 4, 1018 (1986).
  3. J.-J. Wei, Astrophys. J. 868, 29 (2018), arXiv:1806.09781 [astro-ph.CO] .
  4. J.-J. Wei and F. Melia,   (2019), 10.3847/1538-4357/ab5e7d, arXiv:1912.00668 [astro-ph.CO] .
  5. T. S. Pereira and D. T. Pabon, Modern Physics Letters A 31, 1640009 (2016).
  6. R. Arjona and S. Nesseris, Phys. Rev. D 103, 103539 (2021), arXiv:2103.06789 [astro-ph.CO] .
  7. W. Handley, Phys. Rev. D 103, L041301 (2021), arXiv:1908.09139 [astro-ph.CO] .
  8. E. Di Valentino et al., Astropart. Phys. 131, 102607 (2021a), arXiv:2008.11286 [astro-ph.CO] .
  9. E. Mortsell and J. Jonsson,   (2011), arXiv:1102.4485 [astro-ph.CO] .
  10. H. Amirhashchi and S. Amirhashchi, Phys. Rev. D 99, 023516 (2019), arXiv:1803.08447 [astro-ph.CO] .
  11. H. Amirhashchi and S. Amirhashchi, Phys. Dark Univ. 29, 100557 (2020), arXiv:1802.04251 [astro-ph.CO] .
  12. E. Abdalla et al., JHEAp 34, 49 (2022), arXiv:2203.06142 [astro-ph.CO] .
  13. E. Di Valentino et al., Astropart. Phys. 131, 102606 (2021b), arXiv:2008.11283 [astro-ph.CO] .
  14. V. Yadav, Phys. Dark Univ. 42, 101365 (2023), arXiv:2306.16135 [astro-ph.CO] .
  15. S. Alam et al. (eBOSS), Phys. Rev. D 103, 083533 (2021), arXiv:2007.08991 [astro-ph.CO] .
  16. M. Moresco et al., JCAP 08, 006 (2012), arXiv:1201.3609 [astro-ph.CO] .
  17. M. Moresco, Mon. Not. Roy. Astron. Soc. 450, L16 (2015), arXiv:1503.01116 [astro-ph.CO] .
  18. R. Jimenez and A. Loeb, Astrophys. J. 573, 37 (2002), arXiv:astro-ph/0106145 .
  19. V. Mossa et al., Nature 587, 210 (2020).
  20. D. Brout et al., Astrophys. J. 938, 110 (2022), arXiv:2202.04077 [astro-ph.CO] .
  21. V. Marra and L. Perivolaropoulos, Phys. Rev. D 104, L021303 (2021), arXiv:2102.06012 [astro-ph.CO] .
  22. D. Camarena and V. Marra,   (2023), arXiv:2307.02434 [astro-ph.CO] .

Summary

We haven't generated a summary for this paper yet.