Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Liver Fat Quantification Network with Body Shape (2405.11386v2)

Published 18 May 2024 in eess.IV and cs.CV

Abstract: It is critically important to detect the content of liver fat as it is related to cardiac complications and cardiovascular disease mortality. However, existing methods are either associated with high cost and/or medical complications (e.g., liver biopsy, imaging technology) or only roughly estimate the grades of steatosis. In this paper, we propose a deep neural network to estimate the percentage of liver fat using only body shapes. The proposed is composed of a flexible baseline network and a lightweight Attention module. The attention module is trained to generate discriminative and diverse features which significant improve the performance. In order to validate the method, we perform extensive tests on the public medical dataset. The results verify that our proposed method yields state-of-the-art performance with Root mean squared error (RMSE) of 5.26% and R-Squared value over 0.8. It offers an accurate and more accessible assessment of hepatic steatosis.

Summary

We haven't generated a summary for this paper yet.