Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Randomized Planning for Whole Body Robot Motion (2405.11317v2)

Published 18 May 2024 in cs.RO

Abstract: Robot motion planning has made vast advances over the past decades, but the challenge remains: robot mobile manipulators struggle to plan long-range whole-body motion in common household environments in real time, because of high-dimensional robot configuration space and complex environment geometry. To tackle the challenge, this paper proposes Neural Randomized Planner (NRP), which combines a global sampling-based motion planning (SBMP) algorithm and a local neural sampler. Intuitively, NRP uses the search structure inside the global planner to stitch together learned local sampling distributions to form a global sampling distribution adaptively. It benefits from both learning and planning. Locally, it tackles high dimensionality by learning to sample in promising regions from data, with a rich neural network representation. Globally, it composes the local sampling distributions through planning and exploits local geometric similarity to scale up to complex environments. Experiments both in simulation and on a real robot show \NRP yields superior performance compared to some of the best classical and learning-enhanced SBMP algorithms. Further, despite being trained in simulation, NRP demonstrates zero-shot transfer to a real robot operating in novel household environments, without any fine-tuning or manual adaptation.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com